clean_fit_lm(
  outcome,
  variables,
  data,
  ...,
  intercept = TRUE,
  weights = NULL,
  env = baseenv()
)

Arguments

outcome

character, name of outcome column.

variables

character, names of varaible columns.

data

data.frame, training data.

...

not used, force later arguments to be used by name

intercept

logical, if TRUE allow an intercept term.

weights

passed to stats::glm()

env

environment to work in.

Value

list(model=model, summary=summary)

Examples

mk_data_example <- function(k) { data.frame( x1 = rep(c("a", "a", "b", "b"), k), x2 = rep(c(0, 0, 0, 1), k), y = rep(1:4, k), yC = rep(c(FALSE, TRUE, TRUE, TRUE), k), stringsAsFactors = FALSE) } res_lm <- clean_fit_lm("y", c("x1", "x2"), mk_data_example(1)) length(serialize(res_lm$model, NULL))
#> [1] 1506
res_lm <- clean_fit_lm("y", c("x1", "x2"), mk_data_example(10000)) length(serialize(res_lm$model, NULL))
#> [1] 1506
predict(res_lm$model, newdata = mk_data_example(1))
#> 1 2 3 4 #> 1.5 1.5 3.0 4.0