Built matrix of interval deviance costs for held-out logistic models. Fits are evaluated in-sample. One indexed.

lin_costs_logistic(x, y, w, min_seg, indices)

Arguments

x

NumericVector, x-coords of values to group.

y

NumericVector, values to group in order (should be in interval [0,1]).

w

NumericVector, weights (should be positive).

min_seg

positive integer, minimum segment size (>=1).

indices

IntegerVector, ordered list of indices to pair.

Value

xcosts NumericMatix, for j>=i xcosts(i,j) is the cost of partition element [i,...,j] (inclusive).

Examples

lin_costs_logistic(c(1, 2, 3, 4, 5, 6, 7), c(0, 0, 1, 0, 1, 1, 0), c(1, 1, 1, 1, 1, 1, 1), 3, 1:7)
#> [,1] [,2] [,3] [,4] [,5] #> [1,] 1.797693e+308 1.797693e+308 1.797693e+308 4.223965e+00 4.843934e+00 #> [2,] 1.797693e+308 1.797693e+308 1.797693e+308 1.797693e+308 5.343718e+00 #> [3,] 1.797693e+308 1.797693e+308 1.797693e+308 1.797693e+308 1.797693e+308 #> [4,] 4.223965e+00 1.797693e+308 1.797693e+308 1.797693e+308 1.797693e+308 #> [5,] 4.843934e+00 5.343718e+00 1.797693e+308 1.797693e+308 1.797693e+308 #> [6,] 4.955974e+00 5.798465e+00 5.245330e+00 1.797693e+308 1.797693e+308 #> [7,] 8.961938e+00 8.280076e+00 7.094090e+00 5.545177e+00 1.797693e+308 #> [,6] [,7] #> [1,] 4.955974e+00 8.961938e+00 #> [2,] 5.798465e+00 8.280076e+00 #> [3,] 5.245330e+00 7.094090e+00 #> [4,] 1.797693e+308 5.545177e+00 #> [5,] 1.797693e+308 1.797693e+308 #> [6,] 1.797693e+308 1.797693e+308 #> [7,] 1.797693e+308 1.797693e+308