In this example we fit a piecewise constant function to example data.
Please see here for a discussion of the methodology.
library("RcppDynProg") set.seed(2018) g <- 50 d <- data.frame( x = 1:(3*g)) # ordered in x d$y_ideal <- c(rep(0, g), rep(1, g), rep(-1, g)) d$y_observed <- d$y_ideal + rnorm(length(d$y_ideal)) # plot plot(d$x, d$y_observed, xlab = "x", ylab = "y", main = "raw data\ncircles: observed values, dashed line: unobserved true values") lines(d$x, d$y_ideal, type = "l", lty = "dashed")
As a heuristic, we set our regularization penalty to a value that treats permuted data (no relation between x and y) as a single partition.
y_permuted <- d$y_ideal[sample.int(nrow(d), nrow(d), replace = FALSE)] solve_with_penalty <- function(ycol, penalty) { n <- length(ycol) indices = seq_len(n) x <- const_costs(ycol, 1+numeric(n), 1, indices) x <- x + penalty solve_interval_partition(x, n) } lb <- 1 ub <- 10 while(length(solve_with_penalty(y_permuted, ub))>2) { ub <- ub*2 } while(TRUE) { mid <- ceiling((ub+lb)/2) if(mid>=ub) { break } si <- solve_with_penalty(y_permuted, mid) if(length(si)<=2) { ub <- mid } else { lb <- mid } } print(ub)
## [1] 2
We now use this penalty to segment the data. Notice we recover the actual problem structure.
soln <- solve_with_penalty(d$y_observed, ub) print(soln)
## [1] 1 50 101 145 151
d$group <- as.character(findInterval(d$x, soln)) group_means <- tapply(d$y_observed, d$group, mean) d$group_mean <- group_means[d$group] d$estimate <- d$group_mean print(sum((d$y_observed - d$y_ideal)^2))
## [1] 151.876
## [1] 6.653456
# plot d$group <- as.character(d$group) plot(d$x, d$y_observed, xlab = "x", ylab = "y", main = "RcppDynProg piecewise linear estimate\ndots: observed values, segments: estimated shape") points(d$x, d$y_ideal, type = "l", lty = "dashed") cmap <- c("#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", "#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928") names(cmap) <- as.character(seq_len(length(cmap))) points(d$x, d$y_observed, col = cmap[d$group], pch=19) groups <- sort(unique(d$group)) for(gi in groups) { di <- d[d$group==gi, , drop = FALSE] lines(di$x, di$estimate, col = cmap[di$group[[1]]], lwd=2) }
The same solution through the more succinct solve_for_partitionc()
interface.
# x_cuts <- solve_for_partition(d$x, d$y_observed) # sometimes a different penalty due to problem chunking x_cuts <- solve_for_partitionc(d$x, d$y_observed, penalty = ub) print(x_cuts)
## x pred group what
## 1 1 -0.1147501 1 left
## 2 49 -0.1147501 1 right
## 3 50 1.1321951 2 left
## 4 100 1.1321951 2 right
## 5 101 -1.0414092 3 left
## 6 144 -1.0414092 3 right
## 7 145 -0.2065736 4 left
## 8 150 -0.2065736 4 right
d$estimate <- approx(x_cuts$x, x_cuts$pred, xout = d$x, method = "constant", rule = 2)$y d$group <- as.character(findInterval(d$x, x_cuts[x_cuts$what=="left", "x"])) print(sum((d$y_observed - d$y_ideal)^2))
## [1] 151.876
## [1] 6.653456
## [1] 144.2765
# plot d$group <- as.character(d$group) plot(d$x, d$y_observed, xlab = "x", ylab = "y", main = "RcppDynProg piecewise constant estimate\ndots: observed values, segments: estimated shape") points(d$x, d$y_ideal, type = "l", lty = "dashed") cmap <- c("#a6cee3", "#1f78b4", "#b2df8a", "#33a02c", "#fb9a99", "#e31a1c", "#fdbf6f", "#ff7f00", "#cab2d6", "#6a3d9a", "#ffff99", "#b15928") names(cmap) <- as.character(seq_len(length(cmap))) points(d$x, d$y_observed, col = cmap[d$group], pch=19) groups <- sort(unique(d$group)) for(gi in groups) { di <- d[d$group==gi, , drop = FALSE] lines(di$x, di$estimate, col = cmap[di$group[[1]]], lwd=2) }