Example demonstrating “cross validated training frames” (or “cross frames”) in vtreat.
Consider the following data frame. The outcome only depends on the “good” variables, not on the (high degree of freedom) “bad” variables. Modeling such a data set runs a high risk of overfit.
set.seed(22626)
mkData <- function(n) {
d <- data.frame(xBad1=sample(paste('level',1:1000,sep=''),n,replace=TRUE),
xBad2=sample(paste('level',1:1000,sep=''),n,replace=TRUE),
xBad3=sample(paste('level',1:1000,sep=''),n,replace=TRUE),
xGood1=rnorm(n),
xGood2=rnorm(n))
# outcome only depends on "good" variables
d$y <- rnorm(nrow(d))+0.2*d$xGood1 + 0.3*d$xGood2>0.5
# the random group used for splitting the data set, not a variable.
d$rgroup <- sample(c("cal","train","test"),nrow(d),replace=TRUE)
d
}
d <- mkData(2000)
# devtools::install_github("WinVector/WVPlots")
# library('WVPlots')
plotRes <- function(d,predName,yName,title) {
print(title)
tab <- table(truth=d[[yName]],pred=d[[predName]]>0.5)
print(tab)
diag <- sum(vapply(seq_len(min(dim(tab))),
function(i) tab[i,i],numeric(1)))
acc <- diag/sum(tab)
# if(requireNamespace("WVPlots",quietly=TRUE)) {
# print(WVPlots::ROCPlot(d,predName,yName,title))
# }
print(paste('accuracy',acc))
}
Bad practice: use the same set of data to prepare variable encoding and train a model.
dTrain <- d[d$rgroup!='test',,drop=FALSE]
dTest <- d[d$rgroup=='test',,drop=FALSE]
treatments <- vtreat::designTreatmentsC(dTrain,c('xBad1','xBad2','xBad3','xGood1','xGood2'),
'y',TRUE,
rareCount=0 # Note: usually want rareCount>0, setting to zero to illustrate problem
)
## [1] "desigining treatments Thu Apr 13 17:41:00 2017"
## [1] "designing treatments Thu Apr 13 17:41:00 2017"
## [1] " have level statistics Thu Apr 13 17:41:00 2017"
## [1] "design var xBad1 Thu Apr 13 17:41:00 2017"
## [1] "design var xBad2 Thu Apr 13 17:41:01 2017"
## [1] "design var xBad3 Thu Apr 13 17:41:01 2017"
## [1] "design var xGood1 Thu Apr 13 17:41:01 2017"
## [1] "design var xGood2 Thu Apr 13 17:41:01 2017"
## [1] " scoring treatments Thu Apr 13 17:41:01 2017"
## [1] "have treatment plan Thu Apr 13 17:41:01 2017"
## [1] "rescoring complex variables Thu Apr 13 17:41:01 2017"
## [1] "done rescoring complex variables Thu Apr 13 17:41:02 2017"
dTrainTreated <- vtreat::prepare(treatments,dTrain,
pruneSig=c() # Note: usually want pruneSig to be a small fraction, setting to null to illustrate problems
)
m1 <- glm(y~xBad1_catB + xBad2_catB + xBad3_catB + xGood1_clean + xGood2_clean,
data=dTrainTreated,family=binomial(link='logit'))
## Warning: glm.fit: fitted probabilities numerically 0 or 1 occurred
print(summary(m1)) # notice low residual deviance
##
## Call:
## glm(formula = y ~ xBad1_catB + xBad2_catB + xBad3_catB + xGood1_clean +
## xGood2_clean, family = binomial(link = "logit"), data = dTrainTreated)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -2.32190 -0.00014 0.00000 0.00001 2.32399
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.5794 0.3284 -1.764 0.077698 .
## xBad1_catB 1.0987 0.3627 3.029 0.002454 **
## xBad2_catB 0.9302 0.3058 3.042 0.002349 **
## xBad3_catB 1.5057 0.4468 3.370 0.000752 ***
## xGood1_clean 0.8404 0.2619 3.209 0.001334 **
## xGood2_clean 0.8254 0.2854 2.892 0.003823 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1724.55 on 1331 degrees of freedom
## Residual deviance: 114.93 on 1326 degrees of freedom
## AIC: 126.93
##
## Number of Fisher Scoring iterations: 12
dTrain$predM1 <- predict(m1,newdata=dTrainTreated,type='response')
plotRes(dTrain,'predM1','y','model1 on train')
## [1] "model1 on train"
## pred
## truth FALSE TRUE
## FALSE 850 16
## TRUE 7 459
## [1] "accuracy 0.982732732732733"
dTestTreated <- vtreat::prepare(treatments,dTest,pruneSig=c())
dTest$predM1 <- predict(m1,newdata=dTestTreated,type='response')
plotRes(dTest,'predM1','y','model1 on test')
## [1] "model1 on test"
## pred
## truth FALSE TRUE
## FALSE 316 158
## TRUE 134 60
## [1] "accuracy 0.562874251497006"
Notice above that we see a training accuracy of 98% and a test accuracy of 60%. Also notice the downstream model (the glm
) erroneously thinks the xBad?_cat
variables are significant (due to the large number of degrees of freedom hidden from the downstream model by the impact/effect coding).
Now try a proper calibration/train/test split:
dCal <- d[d$rgroup=='cal',,drop=FALSE]
dTrain <- d[d$rgroup=='train',,drop=FALSE]
dTest <- d[d$rgroup=='test',,drop=FALSE]
# a nice heuristic,
# expect only a constant number of noise variables to sneak past
pruneSig <- 1/ncol(dTrain)
treatments <- vtreat::designTreatmentsC(dCal,
c('xBad1','xBad2','xBad3','xGood1','xGood2'),
'y',TRUE,
rareCount=0 # Note: usually want rareCount>0, setting to zero to illustrate problem
)
## [1] "desigining treatments Thu Apr 13 17:41:02 2017"
## [1] "designing treatments Thu Apr 13 17:41:02 2017"
## [1] " have level statistics Thu Apr 13 17:41:02 2017"
## [1] "design var xBad1 Thu Apr 13 17:41:02 2017"
## [1] "design var xBad2 Thu Apr 13 17:41:02 2017"
## [1] "design var xBad3 Thu Apr 13 17:41:02 2017"
## [1] "design var xGood1 Thu Apr 13 17:41:02 2017"
## [1] "design var xGood2 Thu Apr 13 17:41:02 2017"
## [1] " scoring treatments Thu Apr 13 17:41:02 2017"
## [1] "have treatment plan Thu Apr 13 17:41:02 2017"
## [1] "rescoring complex variables Thu Apr 13 17:41:02 2017"
## [1] "done rescoring complex variables Thu Apr 13 17:41:02 2017"
dTrainTreated <- vtreat::prepare(treatments,dTrain,
pruneSig=pruneSig)
newvars <- setdiff(colnames(dTrainTreated),'y')
m1 <- glm(paste('y',paste(newvars,collapse=' + '),sep=' ~ '),
data=dTrainTreated,family=binomial(link='logit'))
print(summary(m1))
##
## Call:
## glm(formula = paste("y", paste(newvars, collapse = " + "), sep = " ~ "),
## family = binomial(link = "logit"), data = dTrainTreated)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.5225 -0.9198 -0.6951 1.1703 2.2995
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.69527 0.08873 -7.836 4.65e-15 ***
## xGood1_clean 0.39514 0.08537 4.629 3.68e-06 ***
## xGood2_clean 0.55134 0.09580 5.755 8.66e-09 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 832.55 on 642 degrees of freedom
## Residual deviance: 771.92 on 640 degrees of freedom
## AIC: 777.92
##
## Number of Fisher Scoring iterations: 4
dTrain$predM1 <- predict(m1,newdata=dTrainTreated,type='response')
plotRes(dTrain,'predM1','y','model1 on train')
## [1] "model1 on train"
## pred
## truth FALSE TRUE
## FALSE 377 41
## TRUE 160 65
## [1] "accuracy 0.687402799377916"
dTestTreated <- vtreat::prepare(treatments,dTest,
pruneSig=pruneSig)
dTest$predM1 <- predict(m1,newdata=dTestTreated,type='response')
plotRes(dTest,'predM1','y','model1 on test')
## [1] "model1 on test"
## pred
## truth FALSE TRUE
## FALSE 425 49
## TRUE 150 44
## [1] "accuracy 0.702095808383233"
Notice above that we now see training and test accuracies of 70%. We have defeated overfit in two ways: training performance is closer to test performance, and test performance is better. Also we see that the model now properly considers the “bad” variables to be insignificant.
Below is a more statistically efficient practice: building a cross training frame.
Consider any trained statistical model (in this case our treatment plan and variable selection plan) as a two-argument function f(A,B). The first argument is the training data and the second argument is the application data. In our case f(A,B) is: designTreatmentsC(A) %>% prepare(B)
, and it produces a treated data frame.
When we use the same data in both places to build our training frame, as in
TrainTreated = f(TrainData,TrainData),
we are not doing a good job simulating the future application of f(,), which will be f(TrainData,FutureData).
To improve the quality of our simulation we can call
TrainTreated = f(CalibrationData,TrainData)
where CalibrationData and TrainData are disjoint datasets (as we did in the earlier example) and expect this to be a good imitation of future f(CalibrationData,FutureData).
Another approach is to build a “cross validated” version of f. We split TrainData into a list of 3 disjoint row intervals: Train1,Train2,Train3. Instead of computing f(TrainData,TrainData) compute:
TrainTreated = f(Train2+Train3,Train1) + f(Train1+Train3,Train2) + f(Train1+Train2,Train3)
(where + denotes rbind()
).
The idea is this looks a lot like f(TrainData,TrainData) except it has the important property that no row in the right-hand side is ever worked on by a model built using that row (a key characteristic that future data will have) so we have a good imitation of f(TrainData,FutureData).
In other words: we use cross validation to simulate future data. The main thing we are doing differently is remembering that we can apply cross validation to any two argument function f(A,B) and not only to functions of the form f(A,B) = buildModel(A) %>% scoreData(B)
. We can use this formulation in stacking or super-learning with f(A,B) of the form buildSubModels(A) %>% combineModels(B)
(to produce a stacked or ensemble model); the idea applies to improving ensemble methods in general.
See:
In fact (though it was developed independently) you can think of vtreat as a superlearner.
In super learning cross validation techniques are used to simulate having built sub-model predictions on novel data. The simulated out of sample-applications of these sub models (and not the sub models themselves) are then used as input data for the next stage learner. In future application the actual sub-models are applied and their immediate outputs is used by the super model.
In vtreat the sub-models are single variable treatments and the outer model construction is left to the practitioner (using the cross-frames for simulation and not the treatmentplan). In application the treatment plan is used.
Below is the example cross-run. The function mkCrossFrameCExperiment
returns a treatment plan for use in preparing future data, and a cross-frame for use in fitting a model.
dTrain <- d[d$rgroup!='test',,drop=FALSE]
dTest <- d[d$rgroup=='test',,drop=FALSE]
prep <- vtreat::mkCrossFrameCExperiment(dTrain,
c('xBad1','xBad2','xBad3','xGood1','xGood2'),
'y',TRUE,
rareCount=0 # Note: usually want rareCount>0, setting to zero to illustrate problems
)
treatments <- prep$treatments
print(treatments$scoreFrame[,c('varName','sig')])
## varName sig
## 1 xBad1_catP 9.578124e-01
## 2 xBad1_catB 9.424435e-02
## 3 xBad2_catP 7.496971e-01
## 4 xBad2_catB 1.142775e-01
## 5 xBad3_catP 7.419157e-01
## 6 xBad3_catB 1.103321e-01
## 7 xGood1_clean 6.072599e-12
## 8 xGood2_clean 8.286789e-21
# vtreat::mkCrossFrameCExperiment doesn't take a pruneSig argument, but we can
# prune on our own.
print(pruneSig)
## [1] 0.1428571
newvars <- treatments$scoreFrame$varName[treatments$scoreFrame$sig<=pruneSig]
# force in bad variables, to show we "belt and suspenders" deal with them
# in that things go well in the cross-frame even if they sneak past pruning
newvars <- sort(union(newvars,c("xBad1_catB","xBad2_catB","xBad3_catB")))
print(newvars)
## [1] "xBad1_catB" "xBad2_catB" "xBad3_catB" "xGood1_clean"
## [5] "xGood2_clean"
dTrainTreated <- prep$crossFrame
We ensured the undesirable xBad*_catB
variables back in to demonstrate that even if they sneak past a lose pruneSig
, the crosframe lets the downstream model deal with them correctly. To ensure more consistent filtering of the complicated variables one can increase the ncross
argument in vtreat::mkCrossFrame?Experiment
.
Now we fit the model to the cross-frame rather than to prepare(treatments, dTrain)
(the treated training data).
m1 <- glm(paste('y',paste(newvars,collapse=' + '),sep=' ~ '),
data=dTrainTreated,family=binomial(link='logit'))
print(summary(m1))
##
## Call:
## glm(formula = paste("y", paste(newvars, collapse = " + "), sep = " ~ "),
## family = binomial(link = "logit"), data = dTrainTreated)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6624 -0.9170 -0.6663 1.1747 2.2971
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.687112 0.065340 -10.516 < 2e-16 ***
## xBad1_catB 0.007962 0.009466 0.841 0.400
## xBad2_catB -0.014104 0.009579 -1.472 0.141
## xBad3_catB 0.014359 0.009331 1.539 0.124
## xGood1_clean 0.405918 0.061888 6.559 5.42e-11 ***
## xGood2_clean 0.570827 0.064946 8.789 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1724.6 on 1331 degrees of freedom
## Residual deviance: 1586.6 on 1326 degrees of freedom
## AIC: 1598.6
##
## Number of Fisher Scoring iterations: 4
dTrain$predM1 <- predict(m1,newdata=dTrainTreated,type='response')
plotRes(dTrain,'predM1','y','model1 on train')
## [1] "model1 on train"
## pred
## truth FALSE TRUE
## FALSE 775 91
## TRUE 331 135
## [1] "accuracy 0.683183183183183"
dTestTreated <- vtreat::prepare(treatments,dTest,
pruneSig=c(),varRestriction=newvars)
dTest$predM1 <- predict(m1,newdata=dTestTreated,type='response')
plotRes(dTest,'predM1','y','model1 on test')
## [1] "model1 on test"
## pred
## truth FALSE TRUE
## FALSE 421 53
## TRUE 145 49
## [1] "accuracy 0.703592814371258"
We again get the better 70% test accuracy. And this is a more statistically efficient technique as we didn’t have to restrict some data to calibration.
The model fit to the cross-frame behaves similarly to the model produced via the process f(CalibrationData, TrainData). Notice that the xBad*_catB
variables fail to achieve significance in the downstream glm
model, allowing that model to give them small coefficients and even (if need be) prune them out. This is the point of using a cross frame as we see in the first example the xBad*_catB
are hard to remove if they make it to standard (non-cross) frames as they are hiding a lot of degrees of freedom from downstream modeling procedures.