Estimate significance of AUC by permutation test.
permTestAUC( d, modelName, yName, yTarget = TRUE, ..., na.rm = FALSE, returnScores = FALSE, nrep = 100, parallelCluster = NULL )
d | data.frame |
---|---|
modelName | character model column name |
yName | character outcome column name |
yTarget | target to match to y |
... | extra arguments (not used) |
na.rm | logical, if TRUE remove NA values |
returnScores | logical if TRUE return detailed permutedScores |
nrep | number of permutation repetitions to estimate p values. |
parallelCluster | (optional) a cluster object created by package parallel or package snow |
AUC statistic
set.seed(25325) d <- data.frame(x1=c(1,2,3,4,5,6,7,7), y=c(FALSE,TRUE,FALSE,FALSE, TRUE,TRUE,FALSE,TRUE)) permTestAUC(d,'x1','y',TRUE)#> [1] "AUC test alt. hyp. AUC>AUC(permuted): (AUC=0.6562, s.d.=0.2167, p=n.s.)."