Helper to build data.table capable non-sql nodes.

rq_df_grouped_funciton_node(
  .,
  f,
  ...,
  f_db = NULL,
  columns_produced,
  group_col,
  display_form
)

Arguments

.

or data.frame input.

f

function that takes a data.table to a data.frame (or data.table).

...

force later arguments to bind by name.

f_db

implementation signature: f_db(db, incoming_table_name, outgoing_table_name) (db being a database handle). NULL defaults to using f.

columns_produced

character columns produces by f.

group_col

character, column to split by.

display_form

display form for node.

Value

relop non-sql node implementation.

See also

Examples

# a node generator is something an expert can # write and part-time R users can use. grouped_regression_node <- function(., group_col = "group", xvar = "x", yvar = "y") { force(group_col) formula_str <- paste(yvar, "~", xvar) f <- function(di) { mi <- lm(as.formula(formula_str), data = di) ci <- as.data.frame(summary(mi)$coefficients) ci$Variable <- rownames(ci) rownames(ci) <- NULL colnames(ci) <- c("Estimate", "Std_Error", "t_value", "p_value", "Variable") ci } columns_produced = c("Estimate", "Std_Error", "t_value", "p_value", "Variable", group_col) rq_df_grouped_funciton_node( ., f, columns_produced = columns_produced, group_col = group_col, display_form = paste0(yvar, "~", xvar, " grouped by ", group_col)) } # work an example set.seed(3265) d <- data.frame(x = rnorm(1000), y = rnorm(1000), group = sample(letters[1:5], 1000, replace = TRUE), stringsAsFactors = FALSE) rquery_pipeline <- local_td(d) %.>% grouped_regression_node(.) cat(format(rquery_pipeline))
#> mk_td("d", c( #> "x", #> "y", #> "group")) %.>% #> non_sql_node(., y~x grouped by group grouped by group)
d %.>% rquery_pipeline
#> Estimate Std_Error t_value p_value Variable group #> 1 0.05921097 0.06246165 0.9479572 0.34421552 (Intercept) a #> 2 -0.02301646 0.06093971 -0.3776924 0.70603174 x a #> 3 0.09793586 0.06666844 1.4689988 0.14335117 (Intercept) b #> 4 0.05703537 0.06963630 0.8190466 0.41370179 x b #> 5 -0.05184909 0.07556010 -0.6861967 0.49348193 (Intercept) c #> 6 0.05554476 0.08019680 0.6926057 0.48945965 x c #> 7 0.15331654 0.07004124 2.1889469 0.02985964 (Intercept) d #> 8 0.02056881 0.06921107 0.2971896 0.76665700 x d #> 9 0.02250647 0.06919627 0.3252556 0.74531773 (Intercept) e #> 10 -0.08785792 0.06864886 -1.2798162 0.20204920 x e