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A Soft margin is not as good as hard-margin

Another issue in reading through the published results is how to relate hard-margin results (most of
what is proven) to soft-margin classifiers (that which are implemented)

Soft margin results are derived from hard margin results in corollary on page 408 of section 10.2.1
of [Vapnik, 1998]. The content is essentially that a support vector machine with a given margin can
be expected to have an error rate on new data (identically distributed as the training data) that is no
more than the error �-margin error rate seen on training data plus a factor that is roughly
V Cdimension/n where n is the number of training examples. From the definitions of section 10.2.1
it appears the �-margin error rate can be taken to be all errors made on training data including all
data that falls too close to the decision surface as also being in error (this appears to be implicit in
the definition of a �-margin separating hyperplane).

Let’s explore a bit how to use such a bound. For our problem set up the very simple artificial one
dimensional problem with x

i

being the effective variable and y
i

being the outcome. Our training data
is y

i

= +1 for x
i

uniformly distributed in (0, 1] and y
i

= �1 for x
i

uniformly distributed in [�1, 0).
We imagine we draw n samples independently from these distributions (picking from the + and -
classes with equal probability).

We are going to make the problem simple and assume we are only estimating a single scalar w
and our model is sign(w · x). In this case we see for any w > 0 we have a perfect model (i.e. see no
errors).

Let’s look how the standard soft-margin SVM procedure would pick a w. The standard
soft-margin SVM optimization problem for this set of concepts (left/right division of the number line
at the origin) is (see [Vapnik, 1998] section 10.2.2):

minimize :

w · w/2 + C

nX

i=1

⇠
i

subject to:
⇠
i

>= 0

y
i

(x
i

· w) >= 1� ⇠
i

Where C is a parameter usually picked before looking at the data, and often picked as C = 1.
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The stated conditions insist |x
i

|w >= 1� ⇠
i

and therefore ⇠
i

>= 1� |x
i

|w. We then expect the
fraction of our data that needs a ⇠

i

> 0 corrections to be min(1, 1/w) and the total mass of
corrections to be Cn

R
min(1,1/w)
x=0 (1� xw)dx.

From the theory of SVMs we can bound the error seen on new data to be no more than �-margin
error rate seen during training plus a (1 + 1/margin2

)/n bound on excess generalization error. Our
margin is of radius 1/w (measured from the center). So we expect our error bound to be no more
than the empirical error rate of an appropriate hard-margin classifier that is considered wrong in the
margin/moat area (or about a 1/w fraction of the time) plus the excess error bound
((1 + 1/margin2

)/n = (1 + w2
)/n). So our total error-bound is 1/w + (1 + w2

)/n. Note we are
assuming that the dimension of the concept space the support vector machine is working in is not
obviously known (so we can’t apply the obvious bound V Cdimension  1, and instead have to rely
on the margin derived portion of the bound).

Let’s see what value of C will minimize this error bound estimate.
# Python ipython

import sympy
x ,w,C, n = sympy . symbols ( [ ’ x ’ , ’w ’ , ’C ’ , ’ n ’ ] )

NormTerm = w⇤w/2
print ( ’NormTerm ’ ,NormTerm)
EMarginTerm = C⇤n⇤sympy . i n t e g r a t e (1�x⇤w, ( x , 0 , 1/w) )
print ( ’EMarginTerm ’ ,EMarginTerm)
Object ive = NormTerm + EMarginTerm
print ( ’ Object ive ’ , Object ive )
Der iva t ive = sympy . d i f f ( Object ive ,w)
print ( ’ Der iva t ive ’ , De r iva t i ve )
OptimalWsGivenC = sympy . s o l v e ( Der ivat ive ,w)
print ( ’OptimalWsGivenC ’ ,OptimalWsGivenC)
BestWGivenC = [ s i for s i in OptimalWsGivenC i f sympy .N( s i . subs ( [ (C, 1 ) , ( n , 1 ) ] ) ) ] [ 0 ]
print ( ’BestWGivenC ’ ,BestWGivenC)
ErrorBound = 1/w + (1 + w⇤⇤2)/n
FnOfC = sympy . s imp l i f y ( ErrorBound . subs (w, BestWGivenC ) )
print ( ’FnOfC ’ ,FnOfC)
D2 = sympy . s imp l i f y ( sympy . d i f f (FnOfC ,C) )
print ( ’D2 ’ ,D2)
CPicks = sympy . s o l v e (D2 ,C)
print ( ’ CPicks ’ , CPicks )

( ’NormTerm ’ , w⇤⇤2/2)
( ’EMarginTerm ’ , C⇤n/(2⇤w))
( ’ Object ive ’ , C⇤n/(2⇤w) + w⇤⇤2/2)
( ’ Der iva t i ve ’ , �C⇤n/(2⇤w⇤⇤2) + w)
( ’OptimalWsGivenC ’ , [ 2⇤⇤ ( 2/3 )⇤ (C⇤n )⇤⇤ (1/3)/2 ,

�2⇤⇤(2/3)⇤(C⇤n )⇤⇤ (1/3)/4 � 2⇤⇤(2/3)⇤ s q r t (3)⇤ I ⇤(C⇤n )⇤⇤ (1/3)/4 ,
�2⇤⇤(2/3)⇤(C⇤n )⇤⇤ (1/3)/4 + 2⇤⇤(2/3)⇤ s q r t (3)⇤ I ⇤(C⇤n )⇤⇤ ( 1 /3 ) /4 ] )

( ’BestWGivenC ’ , 2⇤⇤ (2/3)⇤ (C⇤n )⇤⇤ (1/3)/2)
( ’FnOfC ’ , 2⇤⇤(1/3)⇤C/(2⇤ (C⇤n )⇤⇤ ( 1/3 ) ) + 2⇤⇤ (1/3)/(C⇤n )⇤⇤ (1/3) + 1/n)
( ’D2 ’ , 2⇤⇤ (1/3)⇤ (C � 1)/(3⇤C⇤(C⇤n )⇤⇤ ( 1/3 ) ) )
( ’ CPicks ’ , [ 1 ] )

What we did is look for minima of the optimization objectives (the SVM optimization problem
and then the error-bound) by inspecting extreme of these functions by looking at zeros of derivatives.
This let us confirm the common choice C = 1 is in fact an optimal pick for this toy problem.

Let’s substitute C = 1 into our expressions and see what the SVM optimization procedure
chooses for w, and what generalization bound this gives us.
CPick = CPicks [ 0 ]
wPick = BestWGivenC . subs (C, CPick )
print ( ’ wPick ’ , wPick )
print ( ’ ErrorBoundw ’ , sympy . s imp l i f y ( ErrorBound . subs (w, wPick ) ) )

( ’ wPick ’ , 2⇤⇤(2/3)⇤n⇤⇤ (1/3)/2)
( ’ ErrorBoundw ’ , 1/n + 3⇤2⇤⇤(1/3)/(2⇤n ⇤⇤ ( 1/3 ) ) )
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We see with C = 1 we get w = 2

2/3n1/3/2, which is growing as the number of training examples n
increases (but not shrinking very fast). Our error bound is then 1/n+ 3⇥ 2

1/3/(2n1/3
), which is

slowly shrinking as n grows.
In fact the error bound is shrinking much slower than one might initially expect. The issue is our

data doesn’t have any intrinsic large margin (a common problem) for real data, but we are having to
build our own margin using the soft-margin method.

For a constant margin VC dimension theory tells us excess generalization error shrinks linearly in
n, but picking the optimal margin (i.e. shrinking the margin as we get more data) only gives us an
overall error-rate bound that is shrinking as 1/n1/3. Note this is only the bound, as the actual
error-rate is zero for any w > 0 for this toy problem.

For the fixed C = 1 the optimization algorithm is (correctly) picking smaller margins as more
data becomes available. This shrinking margin unfortunately obscures some of the sample-size driven
improvement in generalization error (the excess generalization error or VC dimension part of the
bound). But the trade-off also allows the training algorithm to consider a larger fraction of the
training data as being out of the moat (or not in the margin around the decision surface). This is
correct behavior on the part of the optimization procedure, and is shrinking the error bound as fast
as possible. But "fast" is much slower than any (incorrect) intuition that a fixed C implies a fixed
margin as the amount of training data increases. Also note, it is not common to actually explicitly
calculate the implied error bound when using SVMs (we just used the obvious structure of our toy
problem to allow such a calculation). And further note, we these bounds are approximate as we used
simplified forms and not the full equations from the reference (though we are confident we get the
overall behavior correct).

This means we expect a halving of the error-bound only each time we multiply our available data
by a factor of eight. This is slower than any rule of thumb that states the error-bound shrinks
linearly with the amount of training data. Just keep this in mind when deciding how much data you
may need for a good SVM result.
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