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Abstract

We set up and solve a minimax under l2 loss problem derived from a coin flipping problem. The
solution is interesting as it involves use of cancellation to solve the mimimax problem.

1 Introduction

Wald [Wald, 1949] set up statistical estimation as a game played against nature where the researcher
picks a (possibly probabilistic) decision function and nature picks an adversarial distribution. Nature’s
distribution plays the role of Bayesian priors, but is not considered to be the an objective true
distribution or a subjective estimate. It is instead a worst-possible distribution so that any inference
bounds proven in this formalism hold in general. This game theoretic form of probability is fascinating
and leads quickly to interesting questions and procedures.

2 The Problem

Take as our problem the task of estimating the unknown win-rate (or heads-rate) p of a random
process or coin. We assume the process is memory-less and stationary (p is not changing and does not
depend on earlier flips). We observe a sequence of n flips showing h wins/heads, and then are asked
to return an estimate φn(h) for p. This problem was discussed and given context in [Mount, 2014a],
[Mount, 2014c], [Mount, 2014b], and [Bauer et al., 2014].

Fix n ∈ N, n ≥ 1. Let p ∈ [0, 1] and φ = (φ(0), . . . , φ(n)) be a (n + 1)-dimensional real vector in
[0, 1]n+1, and define:

Ln(p, φ) :=
n∑
h=0

(
n

h

)
ph(1− p)n−h(φ(h)− p)2. (1)

Ln(p, φ) represents the expected square-error encountered when using φ to estimate the win-rate of
a coin with (unknown) true win-rate p by observing n flips/outcomes. The estimate is: use φ(h) when
you see h wins/heads. This is related to Wald’s game-theoretic formalism, but we are insisting on
pure strategies for both the estimate (a single deterministic φ) and a single unknown true probability
p. We are going to assume that nature picks p in an adversarial manner with full knowledge of φ.

Define:
fn(φ) = max

p∈[0,1]
Ln(p, φ). (2)

What we are looking for is argminφ∈[0,1]n+1fn(φ). The issue is: the definition of fn() has two
quantifiers so it seems like it will be difficult to derive or even check solutions.
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3 A Solution

Figure 1: L1(p, (λ, 1− λ))

Lemma 1. Suppose φ is in the interior of [0, 1]n+1 and is such that Ln(p, φ)−φ(0)2 = 0 simultaneously
for all p. Then: φ is the unique global minimizer of fn().

Proof. Suppose φ is as stated. We will confirm φ is an isolated local minimum by checking partial
derivatives. Look at ∂

∂φ(h)fn(φ) and ∂
∂−φ(h)fn(φ). If we can show these are always both positive for

all h we are done.
We know ∂

∂φ(h)fn(φ) ≥ ∂
∂φ(h)Ln(p, φ) for any p ∈ [0, 1] (i.e. all p curves are active or on the

boundary boundary, figure 1 shows an example). So

∂

∂φ(h)
fn(φ) ≥ max

p

∂

∂φ(h)
Ln(p, φ)

= max
p

(
n

h

)
ph(1− p)n−h2(φ(h)− p)

≥
(
n

h

)
ph(1− p)n−h2(φ(h)− p)

∣∣∣∣
p=φ(h)/2

> 0

2



Similarly we know ∂
∂−φ(h)fn(φ) ≥ ∂

∂−φ(h)Ln(p, φ) for any p ∈ [0, 1]. So

∂

∂ − φ(h)
fn(φ) ≥ max

p

∂

∂ − φ(h)
Ln(p, φ)

= max
p

(
n

h

)
ph(1− p)n−h2(p− φ(h))

≥
(
n

h

)
ph(1− p)n−h2(p− φ(h))

∣∣∣∣
p=(1+φ(h))/2

> 0

So we know φ is an isolated local minimum of fn() But Ln(p, φ) is convex in φ for any fixed n, p
(n ≥ 1, p ∈ [0, 1]), so fn(φ) is also convex in φ. So an isolated local minimum φ is also the unique
global minimum.

Lemma 2. If Ln(p, φ)− φ(0)2 = 0 then

φ(1)2 = φ(0)2 +
2

k
φ(0) (3)

and for all h ≥ 2:

φ(h)2 =
(n+ 2)(n+ 1)

(n+ 2− h)(n+ 1− h)
φ(0)2

+ 2
h

n+ 1− h
φ(h− 1)(1− φ(h− 1))

− h(h− 1)

(n+ 2− h)(n+ 1− h)
(φ(h− 2)− 1)2.

(4)

Proof. Perform a change of variables z = p/(1− p) on Ln(p, φ)− φ(0)2 and collect terms in powers of
z. This yields the following equivalent equation:

n∑
h=0

(
n

h

)
zh((1 + z)φ(h)− z)2 = φ(0)2

n+2∑
h=0

(
n+ 2

h

)
zh. (5)

Which yields the claimed equations organized by powers of z.

Define: φn as the vector in Rn+1 such that

φn(h) :=
1
2

√
n+ h

√
n+ n

(6)

(a thank you to Vladimir Dotsenko1 for finding this solution).

Lemma 3. φn from equation 6 is in the interior of [0, 1]n+1 has Ln(p, φ)− φ(0)2 = 0 simultaneously
for all p.

Proof. It is obvious is in the interior of [0, 1]n+1. So it is just a matter of checking Ln(p, φn)−φn(0)2 = 0
using arguments from [Bauer et al., 2014] or by checking φn obeys the recurrences in lemma 2.

Theorem 1. φn from equation 6 is the unique minimizer of fn(φ) and the only φ in the interior of
[0, 1]n+1 such that Ln(p, φ)− φ(0)2 = 0.

1http://mathoverflow.net/users/1306/vladimir-dotsenko
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Proof. By lemma 3 we know φn meets the conditions of lemma 1. Therefore φn is the unique global
minimizer of fn(). The uniqueness of the minimizer of fn() means there can be no other solutions
of Ln(p, φ) − φ(0)2 = 0 that meet the pre-conditions of lemma 1, so φn must be the only solution
Ln(p, φ)− φ(0)2 = 0 in the interior of [0, 1]n+1.

Note: Ln(p, φ) − φ(0)2 = 0 often has additional real solutions outside of the interior of [0, 1]n+1.

For example ψ2 :=
(
−
√

2
2 −

1
2 ,

1
2 ,
√

2
2 + 3

2

)
is real and L2(p, ψ2) − ψ2(0)2 = 0 (though clearly ψ2 isn’t

in our specified region and doesn’t minimize f2()).
It is kind of neat we get that these is no more than one solution of Ln(p, φ) − φ(0)2 = 0 in the

interior of [0, 1]n+1 from the convexity of the related optimization problem.

4 Discussion

The proof of solution is similar to ideas found in the Majorize-Minimization algorithm[Wikipedia, 2014]
where we are using information from functions coincident with f() to get bounds on directional
gradients.

The motivating problem (estimating the win-rate of a coin by observing n flips) is standard in
probability theory. The derived solution corresponds to Bayesian inference using a β(1

2

√
n, 1

2

√
n)

prior (or pseudo-observations). This is not a common prior: more common being β(1, 1) (Laplace
additive smoothing, also minimizes the expected square error under an assumed uniform distribution
of the unknown quantity p), and the Jeffreys prior β(1

2 ,
1
2).

Here we check the claim about +1 smoothing minimizing expected square error under a uniform
prior for p.

The expected square error under the uniform prior is given by Dn():

Dn(φ) :=

∫ 1

p=0

n∑
h=0

(
n

h

)
ph(1− p)n−h(φ(h)− p)2 dp (7)

Lemma 4. Dn(φ) is minimized at φ = ( 1
n+2 ,

2
n+2 , · · ·

n+1
n+2).

One way to look at this is remember β(x, y) :=
∫ 1
p=0 t

x−1(1 − t)y−1 dp and then notice β(1, 1) is
the uniform density on p. So Laplace “add one” smoothing models the use of a uniform prior. This
is a sign that naive classical probability (where all indifferent primitive events are assumed to have
equal probability, an idea associated with Laplace) may have been an original justification for Laplace
additive smoothing (though obviously not acceptable now).

Proof. Look at ∂
∂φ(h)Dn(φ).

∂

∂φ(h)
Dn(φ) =

∫ 1

p=0

(
n

h

)
ph(1− p)n−h2(φ(h)− p) dp

= 2

(
n

h

)(∫ 1

p=0
ph(1− p)n−hφ(h) dp−

∫ 1

p=0
ph(1− p)n−hp dp

)
= 2

(
n

h

)
(φ(h)β(h+ 1, n− h+ 1)− β(h+ 2, n− h+ 1))

At the optimum we expect these derivatives to be zero. So: φ(h) = β(h+2, n−h+1)/β(h+1, n−
h+ 1) = (h+ 1)/(n+ 2), which is the claim. Really all we are doing is re-deriving the use of β(, ) as
a conjugate prior to Bernoulli/binomial distributions.
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5 Follow-up 10-18-2014

[Savage, 1972] cites this problem (and a solution) coming from [Hodges and Lehmann, 1950]. The
solution form superficially looks different, but simplifies to the form found here (adding

√
n pseudo-

observations, half of which are heads).
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