Plot two receiver operating characteristic curves from the same data.frame.

ROCPlotPair(
  frame,
  xvar1,
  xvar2,
  truthVar,
  truthTarget,
  title,
  ...,
  estimate_sig = FALSE,
  returnScores = FALSE,
  nrep = 100,
  parallelCluster = NULL,
  palette = "Dark2"
)

Arguments

frame

data frame to get values from

xvar1

name of the first independent (input or model) column in frame

xvar2

name of the second independent (input or model) column in frame

truthVar

name of the dependent (output or result to be modeled) column in frame

truthTarget

value we consider to be positive

title

title to place on plot

...

no unnamed argument, added to force named binding of later arguments.

estimate_sig

logical, if TRUE estimate and display significance of difference from AUC 0.5.

returnScores

logical if TRUE return detailed permutedScores

nrep

number of permutation repetitions to estimate p values.

parallelCluster

(optional) a cluster object created by package parallel or package snow.

palette

name of a brewer palette (NULL for ggplot2 default coloring)

Details

The use case for this function is to compare the performance of two models when applied to a data set, where the predictions from both models are columns of the same data frame.

If palette is NULL, plot colors will be chosen from the default ggplot2 palette. Setting palette to NULL allows the user to choose a non-Brewer palette, for example with scale_color_manual.

See also

Examples

set.seed(34903490) x1 = rnorm(50) x2 = rnorm(length(x1)) y = 0.2*x2^2 + 0.5*x2 + x1 + rnorm(length(x1)) frm = data.frame(x1=x1,x2=x2,yC=y>=as.numeric(quantile(y,probs=0.8))) # WVPlots::ROCPlot(frm, "x1", "yC", TRUE, title="Example ROC plot") # WVPlots::ROCPlot(frm, "x2", "yC", TRUE, title="Example ROC plot") WVPlots::ROCPlotPair(frm, "x1", "x2", "yC", TRUE, title="Example ROC pair plot", estimate_sig = TRUE)