
Partitioning Mutate
John Mount, Win-Vector LLC
2017-11-19

When using R to work with a big-data data service such as Apache
Spark using sparklyr the following considerations are critical.

• You must cache and partition at points.1 1 However, you must limit how often
you do this and free unneeded caches.• You must try to limit the set of columns you are working on (so

that you are working on small cache-able projections of your large
data).2 2 The query optimizer may not be

able to skip over producing columns
that you are not actually using, but
are in fact specified in intermediate
queries.

• You must try to limit the number of sequential steps you specify as
they are actualy implemented by nesting of queries.3

3 The nesting gets expensive and
eventually fails. A classic example of
a leaky abstraction. We have simple
examples of too many sequenced
mutates() exhausting Sparklyr.

The point is: you can’t always expect code that is not adapted to
the environment run well.

Let’s set up a working example.4

4 The source code for this article can
be found here.

library("seplyr")

Loading required package: wrapr

packageVersion("seplyr")

[1] '0.5.1'

packageVersion("dplyr")

[1] '0.7.4'

sc <-
sparklyr::spark_connect(version = '2.2.0',

master = "local")

Warning in yaml.load(readLines(con),
error.label = error.label, ...): R
expressions in yaml.load will not be auto-
evaluated by default in the near future

Warning in yaml.load(readLines(con),
error.label = error.label, ...): R
expressions in yaml.load will not be auto-
evaluated by default in the near future

Warning in yaml.load(readLines(con),
error.label = error.label, ...): R
expressions in yaml.load will not be auto-
evaluated by default in the near future

https://www.r-project.org
https://spark.apache.org
https://spark.apache.org
https://spark.rstudio.com
https://www.joelonsoftware.com/2002/11/11/the-law-of-leaky-abstractions/
https://github.com/rstudio/sparklyr/issues/1026
https://github.com/rstudio/sparklyr/issues/1026
https://github.com/WinVector/WinVector.github.io/blob/master/FluidData/partition_mutate.Rmd

partitioning mutate 2

d <- dplyr::starwars %.>%
select_se(., qc(name,

height, mass,
hair_color,
eye_color,
birth_year)) %.>%

dplyr::copy_to(sc, ., name = 'starwars')

class(d)

[1] "tbl_spark" "tbl_sql" "tbl_lazy"
[4] "tbl"

d %.>%
head(.) %.>%
dplyr::collect(.) %.>%
knitr::kable(.)

name height mass hair_color eye_color birth_year

Luke Skywalker 172 77 blond blue 19.0
C-3PO 167 75 NA yellow 112.0
R2-D2 96 32 NA red 33.0
Darth Vader 202 136 none yellow 41.9
Leia Organa 150 49 brown brown 19.0
Owen Lars 178 120 brown, grey blue 52.0

The issue is: generalizations of the following pipeline can be very
expensive to realize (due to the nesting of queries).

d %.>%
dplyr::mutate(., a := 1) %.>%
dplyr::mutate(., b := 2) %.>%
dplyr::mutate(., c := 3) %.>%
dplyr::show_query(.)

<SQL>
SELECT `name`, `height`, `mass`, `hair_color`, `eye_color`, `birth_year`, `a`, `b`, 3.0 AS `c`
FROM (SELECT `name`, `height`, `mass`, `hair_color`, `eye_color`, `birth_year`, `a`, 2.0 AS `b`
FROM (SELECT `name`, `height`, `mass`, `hair_color`, `eye_color`, `birth_year`, 1.0 AS `a`
FROM `starwars`) `dfkmhvzkyd`) `mbfayuyfxk`

The seemingly equivalent pipeline can be much more performant:

d %.>%
dplyr::mutate(.,

partitioning mutate 3

a := 1,
b := 2,
c := 3) %.>%

dplyr::show_query(.)

<SQL>
SELECT `name`, `height`, `mass`, `hair_color`, `eye_color`, `birth_year`, 1.0 AS `a`, 2.0 AS `b`, 3.0 AS `c`
FROM `starwars`

However: it is hard to give the advice “put everything into one
mutate” as the exact availability and semantics of derived columns has
never really been specified in dplyr5 5 It is more often a bit if “it works in

memory, and it may or may not work
against big data sources.” sparklyr
issue 1015, dplyr issue 2481, and
dplyr issue 3095.

The additional confounding issue is code like the following currently
throws:

dplyr::mutate(d,
a := 1,
b := a,
c := b)

Error: org.apache.spark.sql.AnalysisException: cannot resolve '`b`'

It appears there is a dplyr fix in the works.6 6 dplyr commit “Improve subquery
splitting in mutate”If the included descriptive comment:

For each expression, check if it uses any newly created variables.
If so, nest the mutate()

correctly describes the calculation sequence (possibly nest once per
expression), then the mutate would introduce a new stage at each first
use of a derived column.

That would mean a sequence such as the following would in fact be
broken into a sequence of mutates, with a new mutate introduced at
least after each condition.7 7 This code is simulating a sequence of

blocks of conditional column assign-
ments. Such code is quite common in
production Spark projects, especially
those involving the translation of
legacy imperative code such as SAS.
The issue is: we don’t have a control
structure that chooses which col-
umn to assign to, until we introduce
seplyr::if_else_device().

That is the following would get translated from this:

d %.>%
dplyr::mutate(.,

condition1 := height>=150,
mass := ifelse(condition1,

mass + 10,
mass),

hair_color := ifelse(condition1,
'brown',
hair_color),

condition2 := birth_year<50,

http://www.win-vector.com/blog/2017/09/my-advice-on-dplyrmutate/
http://www.win-vector.com/blog/2017/09/my-advice-on-dplyrmutate/
https://github.com/rstudio/sparklyr/issues/1015
https://github.com/rstudio/sparklyr/issues/1015
https://github.com/tidyverse/dplyr/issues/2481
https://github.com/tidyverse/dplyr/issues/3095
https://github.com/tidyverse/dbplyr/commit/36a44cd4b5f70bc06fb004e7787157165766d091
https://github.com/tidyverse/dbplyr/commit/36a44cd4b5f70bc06fb004e7787157165766d091
https://winvector.github.io/seplyr/reference/if_else_device.html

partitioning mutate 4

eye_color := ifelse(condition2,
'blue',
eye_color),

name := ifelse(condition2,
tolower(name),
name))

To something like this:

d %.>%
dplyr::mutate(.,

condition1 := height>=150) %.>%
dplyr::mutate(.,

mass := ifelse(condition1,
mass + 10,
mass),

hair_color := ifelse(condition1,
'brown',
hair_color),

condition2 := birth_year<50) %.>%
dplyr::mutate(.,

eye_color := ifelse(condition2,
'blue',
eye_color),

name := ifelse(condition2,
tolower(name),
name))

Now it might be the case it takes 3 or more levels of dependence to
trigger the issue, but the issue remains:

The mutate gets broken into a number of sub-mutates proportional to
the number of derived columns used later, and not proportional to the
(usually much smaller) dependency depth of re-uses.

This can be a problem. We have routinely seen blocks where there
are 50 or more such variables re-used. This is when the dependence
depth is only 2 or 3 (meaning the expressions could be re-ordered
efficiently).

The thing we are missing is: all of the condition calculations could
be done together in one step (as they do not depend on each other)
and then all the statements that depend on their consequences can
also be executed in another large step.

seplyr::partition_mutate_qt() supplies exactly the needed
partitioning service.8 8 We could try to re-order the state-

ments by hand- but then we would
break up all of the simulated code
blocks and produce hard to read and
maintain code. It is better to keep the
code in a meaningful arrangement and
have a procedure to re-optimize the
code to minimize nesting.

plan <- partition_mutate_qt(
condition1 := height>=150,

partitioning mutate 5

mass := ifelse(condition1,
mass + 10, mass),

hair_color := ifelse(condition1,
'brown', hair_color),

condition2 := birth_year<50,
eye_color := ifelse(condition2,

'blue', eye_color),
name := ifelse(condition2,

tolower(name), name))
print(plan)

$group00001
condition1 condition2
"height >= 150" "birth_year < 50"
##
$group00002
mass
"ifelse(condition1, mass + 10, mass)"
hair_color
"ifelse(condition1, \"brown\", hair_color)"
eye_color
"ifelse(condition2, \"blue\", eye_color)"
name
"ifelse(condition2, tolower(name), name)"

res <- mutate_seb(d, plan)

res %.>%
dplyr::show_query(.)

<SQL>
SELECT `height`, `birth_year`, `condition1`, `condition2`, CASE WHEN (`condition1`) THEN (`mass` + 10.0) ELSE (`mass`) END AS `mass`, CASE WHEN (`condition1`) THEN ("brown") ELSE (`hair_color`) END AS `hair_color`, CASE WHEN (`condition2`) THEN ("blue") ELSE (`eye_color`) END AS `eye_color`, CASE WHEN (`condition2`) THEN (LOWER(`name`)) ELSE (`name`) END AS `name`
FROM (SELECT `name`, `height`, `mass`, `hair_color`, `eye_color`, `birth_year`, `height` >= 150.0 AS `condition1`, `birth_year` < 50.0 AS `condition2`
FROM `starwars`) `gvvddljbzj`

res %.>%
head(.) %.>%
collect to avoid https://github.com/rstudio/sparklyr/issues/1134
dplyr::collect(.) %.>%
knitr::kable(.)

height birth_year condition1 condition2 mass hair_color eye_color name

172 19.0 TRUE TRUE 87 brown blue luke skywalker
167 112.0 TRUE FALSE 85 brown yellow C-3PO
96 33.0 FALSE TRUE 32 NA blue r2-d2

partitioning mutate 6

height birth_year condition1 condition2 mass hair_color eye_color name

202 41.9 TRUE TRUE 146 brown blue darth vader
150 19.0 TRUE TRUE 59 brown blue leia organa
178 52.0 TRUE FALSE 130 brown blue Owen Lars

The idea is: no matter how many statements are present seplyr::partition_mutate_qt()
breaks the mutate() statement into a sequence of length proportional
only the the value dependency depth (in this case: 2), and not propor-
tional to the number of introduced values (which can be as long as the
number of conditions introduced).

The above situation is admittedly ugly, but not something you can
wish away if you want to support actual production use-cases.9 9 And if you want to support porting

working code from other systems,
meaning a complete re-design is not
on the table.

For an example bringing out more of these issues please see here.

Links

Win-Vector LLC supplies a number of open-source R packages for
working effectively with big data. These include:

• wrapr: supplies code re-writing tools that make coding over “non
standard evaluation” interfaces (such as dplyr) much easier.

• cdata: supplies pivot/un-pivot functionality at big data scale.
• rquery: (in development) big data scale relational data operators.
• seplyr: supplies improved interfaces for many data manipulation

tasks.
• replyr: supplies tools and patches for using dplyr on big data.

Partitioning mutate articles:

• Partitioning Mutate: basic example.
• Partitioning Mutate, Example 2: ifelse example.
• Partitioning Mutate, Example 3 rquery example.

Topics such as the above are often discussed on the Win-Vector
blog.

http://winvector.github.io/FluidData/partition_mutate_ex2.html
http://www.win-vector.com/
https://www.r-project.org
https://winvector.github.io/wrapr/
http://adv-r.had.co.nz/Computing-on-the-language.html
http://adv-r.had.co.nz/Computing-on-the-language.html
https://winvector.github.io/cdata/
https://github.com/WinVector/rquery
https://winvector.github.io/seplyr/
https://winvector.github.io/replyr/
http://winvector.github.io/FluidData/partition_mutate.html
http://winvector.github.io/FluidData/partition_mutate_ex2.html
http://winvector.github.io/FluidData/partition_mutate_ex3.html
https://github.com/WinVector/rquery
http://www.win-vector.com/blog/
http://www.win-vector.com/blog/

