
Coordinatized Data: A Fluid Data Specification
John Mount and Nina Zumel
March 29, 2017

Introduction

It has been our experience when teaching the data wrangling part
of data science that students often have difficulty understanding the
conversion to and from row-oriented and column-oriented data formats
(what is commonly called pivoting and un-pivoting).

http://www.darkroastedblend.com/2014/01/machines-alive-whimsical-art-of-boris.html)][Boris Artzybasheff
illustration](http://www.darkroastedblend.com/2014/01/machines-alive-whimsical-art-of-boris.html)

Figure 1: (

Real trust and understanding of this concept doesn’t fully form un-
til one realizes that rows and columns are inessential implementation
details when reasoning about your data. Many algorithms are sensitive
to how data is arranged in rows and columns, so there is a need to
convert between representations. However, confusing representation
with semantics slows down understanding.

coordinatized data: a fluid data specification 2

In this article we will try to separate representation from semantics.
We will advocate for thinking in terms of coordinatized data, and
demonstrate advanced data wrangling in R.

Example

Consider four data scientists who perform the same set of modeling
tasks, but happen to record the data differently.

In each case the data scientist was asked to test two decision tree
regression models (a and b) on two test-sets (x and y) and record both
the model quality on the test sets under two different metrics (AUC and
pseudo R-squared). The two models differ in tree depth (in this case
model a has depth 5, and model b has depth 3), which is also to be
recorded.

Data Scientist 1
Data Scientist 1

Data scientist 1 is an experienced modeler, and records their data as
follows:

library("tibble")
d1 <- tribble(
~model, ~depth, ~testset, ~AUC, ~pR2,
'a', 5, 'x', 0.4, 0.2,
'a', 5, 'y', 0.6, 0.3,
'b', 3, 'x', 0.5, 0.25,
'b', 3, 'y', 0.5, 0.25

)
knitr::kable(d1)

model depth testset AUC pR2

a 5 x 0.4 0.20
a 5 y 0.6 0.30
b 3 x 0.5 0.25
b 3 y 0.5 0.25

Data Scientist 1 uses what is called a denormalized form (we use
this term out of respect for the priority of Codd’s relational model
theory). In this form each row contains all of the facts we want ready
to go. If we were thinking about “column roles” (a concept we touched
on briefly in Section A.3.5 “How to Think in SQL” of Practical Data
Science with R, Zumel, Mount; Manning 2014), then we would say the
columns model and testset are key columns (together they form a
composite key that uniquely identifies rows), the depth column is de-

https://cran.r-project.org
https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve
http://www.win-vector.com/blog/2011/09/the-simpler-derivation-of-logistic-regression/
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Relational_model
http://www.practicaldatascience.com/
http://www.practicaldatascience.com/

coordinatized data: a fluid data specification 3

rived (it is a function of model), and AUC and pR2 are payload columns
(they contain data).

Denormalized forms are the most ready for tasks that reason across
columns, such as training or evaluating machine learning models.

Data Scientist 2
Data Scientist 2

Data Scientist 2 has data warehousing experience and records their
data in a normal form:

models2 <- tribble(
~model, ~depth,
'a', 5,
'b', 3

)
knitr::kable(models2)

model depth

a 5
b 3

d2 <- tribble(
~model, ~testset, ~AUC, ~pR2,
'a', 'x', 0.4, 0.2,
'a', 'y', 0.6, 0.3,
'b', 'x', 0.5, 0.25,
'b', 'y', 0.5, 0.25

)
knitr::kable(d2)

model testset AUC pR2

a x 0.4 0.20
a y 0.6 0.30
b x 0.5 0.25
b y 0.5 0.25

The idea is: since depth is a function of the model name, it should
not be recorded as a column unless needed. In a normal form such
as above, every item of data is written only one place. This means
that we cannot have inconsistencies such as accidentally entering two
different depths for a given model. In this example all our columns are
either key or payload.

https://en.wikipedia.org/wiki/Database_normalization#Normal_forms

coordinatized data: a fluid data specification 4

Data Scientist 2 is not concerned about any difficulty that might
arise by this format as they know they can convert to Data Scientist
1’s format by using a join command:

suppressPackageStartupMessages(library("dplyr"))

Warning: package 'dplyr' was built under R
version 3.5.1

d1_2 <- left_join(d2, models2, by='model') %>%
select(model, depth, testset, AUC, pR2) %>%
arrange(model, testset)

knitr::kable(d1_2)

model depth testset AUC pR2

a 5 x 0.4 0.20
a 5 y 0.6 0.30
b 3 x 0.5 0.25
b 3 y 0.5 0.25

all.equal(d1, d1_2)

[1] TRUE

Relational data theory (the science of joins) is the basis of Struc-
tured Query Language (SQL) and a topic any data scientist must mas-
ter.

Data Scientist 3
Data Scientist 3

Data Scientist 3 has a lot of field experience, and prefers an en-
tity/attribute/value notation. They log each measurement as a sep-
arate row:

d3 <- tribble(
~model, ~depth, ~testset, ~measurement, ~value,
'a', 5, 'x', 'AUC', 0.4,
'a', 5, 'x', 'pR2', 0.2,
'a', 5, 'y', 'AUC', 0.6,
'a', 5, 'y', 'pR2', 0.3,
'b', 3, 'x', 'AUC', 0.5,
'b', 3, 'x', 'pR2', 0.25,
'b', 3, 'y', 'AUC', 0.5,
'b', 3, 'y', 'pR2', 0.25

)
knitr::kable(d3)

https://en.wikipedia.org/wiki/Relational_algebra
https://en.wikipedia.org/wiki/Entity–attribute–value_model
https://en.wikipedia.org/wiki/Entity–attribute–value_model

coordinatized data: a fluid data specification 5

model depth testset measurement value

a 5 x AUC 0.40
a 5 x pR2 0.20
a 5 y AUC 0.60
a 5 y pR2 0.30
b 3 x AUC 0.50
b 3 x pR2 0.25
b 3 y AUC 0.50
b 3 y pR2 0.25

In this form model, testset, and measurement are key columns.
depth is still running around as a derived column and the new value
column holds the measurements (which could in principle have differ-
ent types in different rows!).

Data Scientist 3 is not worried about their form causing problems
as they know how to convert into Data Scientist 1’s format with an R
command:

library("tidyr")

d1_3 <- d3 %>%
spread('measurement', 'value') %>%
select(model, depth, testset, AUC, pR2) %>% # to guarantee column order
arrange(model, testset) # to guarantee row order

knitr::kable(d1_3)

model depth testset AUC pR2

a 5 x 0.4 0.20
a 5 y 0.6 0.30
b 3 x 0.5 0.25
b 3 y 0.5 0.25

all.equal(d1, d1_3)

[1] TRUE

You can read a bit on spread() here.
We will use the term pivot_to_rowrecs() for this operation later.

The spread() will be replaced with the following.

pivot_to_rowrecs(data = d3,
columnToTakeKeysFrom = 'measurement',
columnToTakeValuesFrom = 'value',
rowKeyColumns = c('model', 'testset'))

http://r4ds.had.co.nz/tidy-data.html#spreading-and-gathering

coordinatized data: a fluid data specification 6

The above operation is a bit exotic and it (and its inverse) already
go under number of different names:

• pivot / un-pivot (Microsoft Excel)
• pivot / anti-pivot (databases)
• crosstab / shred (databases)
• unstack / stack (R)
• cast / melt (reshape, reshape2)
• spread / gather (tidyr)
• “widen” / “narrow” (colloquial)
• pivot_to_rowrecs() and unpivot_to_blocks() (this writeup,

basic “coordinatized data”1) 1 original here
• blocks_to_rowrecs() and rowrecs_to_blocks() (the more

genaral “fluid data” operators)

And we are certainly neglecting other namings of the concept. We
find none of these particularly evocative (though cheatsheets help),
so one purpose of this note will be to teach these concepts in terms
of the deliberately verbose ad-hoc terms: pivot_to_rowrecs() and
unpivot_to_blocks().

Note: often the data re-arrangement operation is only exposed as
part of a larger aggregating or tabulating operation. Also pivot_to_rowrecs()
is considered the harder transform direction (as it has to group rows
to work), so it is often supplied in packages, whereas analysts often
use ad-hoc methods for the simpler unpivot_to_blocks() operation
(to be defined next).

Data Scientist 4
Data Scientist 4

Data Scientist 4 picks a form that makes models unique keys, and
records the results as:

d4 <- tribble(
~model, ~depth, ~x_AUC, ~x_pR2, ~y_AUC, ~y_pR2,
'a', 5, 0.4, 0.2, 0.6, 0.3,
'b', 3, 0.5, 0.25, 0.5, 0.25

)

knitr::kable(d4)

model depth x_AUC x_pR2 y_AUC y_pR2

a 5 0.4 0.20 0.6 0.30
b 3 0.5 0.25 0.5 0.25

https://winvector.github.io/cdata/reference/pivot_to_rowrecs.html
https://winvector.github.io/cdata/reference/unpivot_to_blocks.html
http://winvector.github.io/FluidData/RowsAndColumns.html
https://github.com/WinVector/cdata/blob/master/extras/RowsAndColumns.md
https://winvector.github.io/cdata/reference/blocks_to_rowrecs_q.html
https://winvector.github.io/cdata/reference/rowrecs_to_blocks_q.html
https://github.com/WinVector/cdata/blob/master/extras/FluidData.md
https://www.rstudio.com/wp-content/uploads/2015/02/data-wrangling-cheatsheet.pdf

coordinatized data: a fluid data specification 7

This is not a problem as it is possible to convert to Data Scientist
3’s format.

d3_4 <- d4 %>%
gather('meas', 'value', x_AUC, y_AUC, x_pR2, y_pR2) %>%
separate(meas, c('testset', 'measurement')) %>%
select(model, depth, testset, measurement, value) %>%
arrange(model, testset, measurement)

knitr::kable(d3_4)

model depth testset measurement value

a 5 x AUC 0.40
a 5 x pR2 0.20
a 5 y AUC 0.60
a 5 y pR2 0.30
b 3 x AUC 0.50
b 3 x pR2 0.25
b 3 y AUC 0.50
b 3 y pR2 0.25

all.equal(d3, d3_4)

[1] TRUE

We will replace the gather operation with unpivot_to_blocks()
and the call will look like the following.

unpivot_to_blocks(data = d4,
nameForNewKeyColumn = 'meas',
nameForNewValueColumn = 'value',
columnsToTakeFrom = c('x_AUC', 'y_AUC', 'x_pR2', 'y_pR2'))

unpivot_to_blocks() is (under some restrictions) an inverse of
pivot_to_rowrecs().

We find the more verbose naming (and calling interface) more intu-
itive. So we encourage you to think directly in terms of unpivot_to_blocks()
as moving values to different rows (in the same column), and blocks_to_rowrecs()
as moving values to different columns (in the same row). It will usu-
ally be apparent from your problem which of these operations you
want to use.

The Theory of Coordinatized Data

When you are working with transformations you look for invariants to
keep your bearings. All of the above data share an invariant property

coordinatized data: a fluid data specification 8

Figure 2: Figures we will explain later

we call being coordinatized data. In this case the invariant is so strong
that one can think of all of the above examples as being equivalent,
and the row/column transformations as merely changes of frame of
reference.

Let’s define coordinatized data by working with our examples. In all
the above examples a value carrying (or payload) cell or entry can be
uniquely named as follows:

c(Table=tableName, (KeyColumn=KeyValue)*, ValueColumn=ValueColumnName)

The above notations are the coordinates of the data item (hence
“coordinatized data”).

For instance: the AUC of 0.6 is in a cell that is named as follows for
each of our scientists as:

• Data Scientist 1: c(Table='d1', model='a', testset='y',
ValueColumn='AUC')

• Data Scientist 2: c(Table='d2', model='a', testset='y',
ValueColumn='AUC')

• Data Scientist 3: c(Table='d3', model='a', testset='y',
measurement='AUC', ValueColumn='value')

• Data Scientist 4: c(Table='d4', model='a', ValueColumn=
paste('y', 'AUC', sep= '_'))

From our point of view these keys all name the same data item.
We deliberately do not call one form tidy or another form un-tidy
(which can be taken as a needlessly pejorative judgement), each has
advantages depending on the application.

The fact that we are interpreting one position as a table name and
another as a column name is just convention (one can try to take these
key-based representations further, as in RDF triples, but this usually
leads to awkward data representations). We can even write R code
that uses these keys on all our scientists’ data without performing any
reformatting:

https://en.wikipedia.org/wiki/Semantic_triple

coordinatized data: a fluid data specification 9

take a map from names to scalar conditions and return a value.
inefficient method; notional only
lookup <- function(key) {
table <- get(key[['Table']])
col <- key[['ValueColumn']]
conditions <- setdiff(names(key),

c('Table', 'ValueColumn'))
for(ci in conditions) {
table <- table[table[[ci]]==key[[ci]], ,

drop= FALSE]
}
table[[col]][[1]]

}

k1 <- c(Table='d1', model='a', testset='y',
ValueColumn='AUC')

k2 <- c(Table='d2', model='a', testset='y',
ValueColumn='AUC')

k3 <- c(Table='d3', model='a', testset='y',
measurement='AUC', ValueColumn='value')

k4 = c(Table='d4', model='a',
ValueColumn= paste('y', 'AUC', sep= '_'))

print(lookup(k1))

[1] 0.6

print(lookup(k2))

[1] 0.6

print(lookup(k3))

[1] 0.6

print(lookup(k4))

[1] 0.6

The lookup() procedure was able to treat all these keys and key
positions uniformly. This illustrates that what is in tables versus what
is in rows versus what is in columns is just an implementation detail.
Once we understand that all of these data scientists recorded the same
data we should not be surprised we can convert between representa-
tions.

The thing to remember: coordinatized data is in cells, and ev-
ery cell has unique coordinates. We are going to use this invariant

coordinatized data: a fluid data specification 10

as our enforced precondition before any data transform, which will
guarantee our data meets this invariant as a postcondition. I.e., if we
restrict ourselves to coordinatized data and exclude wild data, the
operations pivot_to_rowrecs() and unpivot_to_blocks() become
well-behaved and much easier to comprehend. In particular, they are
invertible. (In math terms, the operators pivot_to_rowrecs() and
unpivot_to_blocks() form a groupoid acting on coordinatized data.)

\begin{marginfigure}
\caption[[The 15 puzzle]{The 15 puzzle: another groupoid} \end{marginfigure}

By “wild” data we mean data where cells don’t have unique lookup()
addresses. This often happens in data that has repeated measure-
ments. Wild data is simply tamed by adding additional keying columns
(such as an arbitrary experiment repetition number). Hygienic data
collection practice nearly always produces coordinatized data, or at
least data that is easy to coordinatize. Our position is that your data
should always be coordinatized; if it’s not, you shouldn’t be working
with it yet.

Rows and Columns

Many students are initially surprised that row/column conversions
are considered “easy.” Thus, it is worth taking a little time to review
moving data between rows and columns.

https://en.wikipedia.org/wiki/Precondition
https://en.wikipedia.org/wiki/Groupoid
http://www.neverendingbooks.org/the-15-puzzle-groupoid-1

coordinatized data: a fluid data specification 11

Moving From Columns to Rows (“Thinifying data”)

Moving data from columns to rows (i.e., from Scientist 1 to Scien-
tist 3) is easy to demonstrate and explain.

The only thing hard about this operation is remembering the name
of the operation (“gather()”) and the arguments. We can remove this
inessential difficulty by bringing in a new notation (on top of a very
powerful theory and implementation):

library("cdata")

In this notation moving from Data Scientist 1’s records to Data
Scientist 3’s looks like the following.

d3from1 <- unpivot_to_blocks(data=d1,
nameForNewKeyColumn= 'measurement',
nameForNewValueColumn= 'value',
columnsToTakeFrom = c('AUC', 'pR2')) %>%

select(model, depth, testset, measurement, value) %>%
arrange(model, testset, measurement)

knitr::kable(d3from1)

model depth testset measurement value

a 5 x AUC 0.40
a 5 x pR2 0.20
a 5 y AUC 0.60

coordinatized data: a fluid data specification 12

model depth testset measurement value

a 5 y pR2 0.30
b 3 x AUC 0.50
b 3 x pR2 0.25
b 3 y AUC 0.50
b 3 y pR2 0.25

all.equal(d3, d3from1)

[1] TRUE

In a unpivot_to_blocks() operation each row of the data frame is
torn up and used to make many rows. Each of the columns we specify
that we want measurements from gives us a new row from each of the
original data rows.

The pattern is more obvious if we process any rows of d1 indepen-
dently:

row <- d1[3,]
knitr::kable(row)

model depth testset AUC pR2

b 3 x 0.5 0.25

unpivot_to_blocks(data=row,
nameForNewKeyColumn= 'measurement',
nameForNewValueColumn= 'value',
columnsToTakeFrom = c('AUC', 'pR2')) %>%

select(model, depth, testset, measurement, value) %>%
arrange(model, testset, measurement) %>%
knitr::kable()

model depth testset measurement value

b 3 x AUC 0.50
b 3 x pR2 0.25

Moving From Rows to Columns (“Widening data”)

Moving data from rows to columns (i.e., from Scientist 3 to Scientist
1) is a bit harder to explain, and usually not explained well.

In moving from rows to columns we group a set of rows that go
together (match on keys) and then combine them into one row by

coordinatized data: a fluid data specification 13

adding additional columns.

Note: to move data from rows to columns we must know which
set of rows go together. That means some set of columns is working
as keys, even though this is not emphasized in the spread() calling
interface or explanations. For invertible data transforms, we want
a set of columns (rowKeyColumns) that define a composite key that
uniquely identifies each row of the result. For this to be true, the
rowKeyColumns plus the column we are taking value keys from must
uniquely identify each row of the input.

To make things easier to understand and remember, we introduce
another function: pivot_to_rowrecs().

This lets us rework the example of moving from Data Scientist 3’s
format to Data Scientist 1’s:

d1from3 <- pivot_to_rowrecs(data= d3,
columnToTakeKeysFrom= 'measurement',
columnToTakeValuesFrom= 'value',
rowKeyColumns= c('model', 'testset')) %>%

select(model, depth, testset, AUC, pR2) %>%
arrange(model, testset)

knitr::kable(d1from3)

coordinatized data: a fluid data specification 14

model depth testset AUC pR2

a 5 x 0.4 0.20
a 5 y 0.6 0.30
b 3 x 0.5 0.25
b 3 y 0.5 0.25

all.equal(d1, d1from3)

[1] TRUE

If the structure of our data doesn’t match our expected keying we
can have problems. We emphasize that these problems arise from try-
ing to work with non-coordinatized data, and not from the transforms
themselves.

Too little keying

If our keys don’t contain enough information to match rows together
we can have a problem. Suppose our testset record was damaged or
not present and look how a direct call to spread works:

d3damaged <- d3
d3damaged$testset <- 'z'
knitr::kable(d3damaged)

model depth testset measurement value

a 5 z AUC 0.40
a 5 z pR2 0.20
a 5 z AUC 0.60
a 5 z pR2 0.30
b 3 z AUC 0.50
b 3 z pR2 0.25
b 3 z AUC 0.50
b 3 z pR2 0.25

spread(d3damaged, 'measurement', 'value')

Error: Duplicate identifiers for rows (1, 3), (5, 7), (2, 4), (6, 8)

This happens because the precondition is not met: the columns
(model, testset, measurement) don’t uniquely represent each row
of the input. Catching the error is good, and we emphasize that in our
function.

coordinatized data: a fluid data specification 15

pivot_to_rowrecs(data= d3damaged,
columnToTakeKeysFrom= 'measurement',
columnToTakeValuesFrom= 'value',
rowKeyColumns= c('model', 'testset'))

Error in blocks_to_rowrecs.default(data, keyColumns = rowKeyColumns, controlTable = cT, : cdata::blocks_to_rowrecs: keyColumns plus first column of control table do not uniquely key rows

The above issue is often fixed by adding additional columns (such
as measurement number or time of measurement).

Too much keying

Columns can also contain too fine a key structure. For example, sup-
pose our data was damaged and depth is no longer a function of the
model id, but contains extra detail. In this case a direct call to spread
produces a way too large result because the extra detail prevents it
from matching rows.

d3damaged <- d3
d3damaged$depth <- seq_len(nrow(d3damaged))
knitr::kable(d3damaged)

model depth testset measurement value

a 1 x AUC 0.40
a 2 x pR2 0.20
a 3 y AUC 0.60
a 4 y pR2 0.30
b 5 x AUC 0.50
b 6 x pR2 0.25
b 7 y AUC 0.50
b 8 y pR2 0.25

knitr::kable(spread(d3damaged, 'measurement', 'value'))

model depth testset AUC pR2

a 1 x 0.4 NA
a 2 x NA 0.20
a 3 y 0.6 NA
a 4 y NA 0.30
b 5 x 0.5 NA
b 6 x NA 0.25
b 7 y 0.5 NA
b 8 y NA 0.25

coordinatized data: a fluid data specification 16

The frame d3damaged does not match the user’s probable intent:
that the columns (model, testset) should uniquely specify row
groups, or in other words, they should uniquely identify each row of
the result.

In the above case we feel it is good to allow the user to declare
intent (hence the extra rowKeyColumns argument) and throw an ex-
ception if the data is not structured how the user expects (instead of
allowing this data to possibly ruin a longer analysis in some unnoticed
manner).

pivot_to_rowrecs(data= d3damaged,
columnToTakeKeysFrom= 'measurement',
columnToTakeValuesFrom= 'value',
rowKeyColumns= c('model', 'testset'))

A tibble: 4 x 5
model testset depth AUC pR2
<chr> <chr> <int> <dbl> <dbl>
1 a x 1 0.4 0.2
2 a y 3 0.6 0.3
3 b x 5 0.5 0.25
4 b y 7 0.5 0.25

The above issue is usually fixed by one of two solutions (which one
is appropriate depends on the situation):

1. Stricter control (via dplyr::select()) of which columns are in
the analysis. In our example, we would select all the columns of
d3damaged except depth.

2. Aggregating or summing out the problematic columns. For ex-
ample if the problematic column in our example were runtime,
which could legitimately vary for the same model and dataset, we
could use dplyr::group_by/summarize to create a data frame
with columns (model, testset, mean_runtime, measurement,
value), so that (model, testset) does uniquely specify row
groups.

Conclusion

The concept to remember is: organize your records so data cells have
unique consistent abstract coordinates. For coordinatized data the
actual arrangement of data into tables, rows, and columns is an im-
plementation detail or optimization that does not significantly change
what the data means.

For coordinatized data different layouts of rows and columns are
demonstrably equivalent. We document and maintain this equivalence

coordinatized data: a fluid data specification 17

by asking the analyst to describe their presumed keying structure to
our methods, which then use this documentation to infer intent and
check preconditions on the transforms.

It pays to think fluidly in terms of coordinatized data and delay any
format conversions until you actually need them. You will eventually
need transforms as most data processing steps have a preferred format.
For example, machine learning training usually requires a denormal-
ized form.

We feel the methods unpivot_to_blocks() and pivot_to_rowrecs()
are easier to learn and remember than abstract terms such as “stack/unstack”,
“melt/cast”, or “gather/spread” and thus are a good way to teach.
Perhaps they are even a good way to document (and confirm) your
intent in your own projects. These terms also anticipate the more gen-
eral table controlled operators rowrecs_to_blocks() and blocks_to_rowrecs().
For more on the general theory please see “Fluid data reshaping with
cdata”.

https://winvector.github.io/cdata/reference/unpivot_to_blocks.html
https://winvector.github.io/cdata/reference/pivot_to_rowrecs.html
https://winvector.github.io/cdata/reference/rowrecs_to_blocks_q.html
https://winvector.github.io/cdata/reference/blocks_to_rowrecs_q.html
http://winvector.github.io/FluidData/FluidDataReshapingWithCdata.html
http://winvector.github.io/FluidData/FluidDataReshapingWithCdata.html

	Introduction
	Example
	The Theory of Coordinatized Data
	Rows and Columns
	Conclusion

