
An Introduction to seplyr
John Mount, Win-Vector LLC
2017-11-29

Introduction

seplyr is an R package that supplies improved standard evaluation
interfaces for many common data wrangling tasks.

The core of seplyr is a re-skinning of dplyr’s to seplyr conven-
tions (similar to how stringr re-skins the implementing package
stringi).

Standard Evaluation and Non-Standard Evaluation

“Standard evaluation” is the name we are using for the value oriented
calling convention found in many programming languages. The idea
is: functions are only allowed to look at the values of their arguments
and not how those values arise (i.e., they can not look at source code
or variable names). This evaluation principle allows one to transform,
optimize, and reason about code.

It is what let’s us say the following two snippets of code are equiva-
lent.

• x <- 4; sqrt(x)
• x <- 4; sqrt(4)

The mantra is:

“variables can be replaced with their values.”

Which is called referential transparency.
“Non-standard evaluation” is the name used for code that more

aggressively inspects its environment. It is often used for harmless
tasks such as conveniently setting axis labels on plots. For example,
notice the following two plots have different y-axis labels (despite
plotting identical values).

plot(x = 1:3)

1.0 1.5 2.0 2.5 3.0

1.
0

2.
5

Index

1:
3

plot(x = c(1, 2, 3))

https://winvector.github.io/seplyr/
https://www.r-project.org
https://CRAN.R-project.org/package=dplyr
https://CRAN.R-project.org/package=stringr
https://CRAN.R-project.org/package=stringi
https://en.wikipedia.org/wiki/Referential_transparency
http://adv-r.had.co.nz/Computing-on-the-language.html

an introduction to seplyr 2

1.0 1.5 2.0 2.5 3.0
1.

0
2.

5

Index

c(
1,

 2
, 3

)

dplyr and seplyr

The dplyr authors appear to strongly prefer a non-standard evalu-
ation interface. Many in the dplyr community have come to think
a package such as dplyr requires a non-standard interface. seplyr
started as an experiment to show this is not actually the case.

Syntactically the packages are deliberately similar.
We can take a dplyr pipeline:

suppressPackageStartupMessages(library("dplyr"))

starwars %>% select(name, height, mass) %>% arrange(desc(height)) %>%
head()

A tibble: 6 x 3
name height mass
<chr> <int> <dbl>
1 Yarael Poof 264 NA
2 Tarfful 234 136
3 Lama Su 229 88
4 Chewbacca 228 112
5 Roos Tarpals 224 82
6 Grievous 216 159

And re-write it in seplyr notation:

library("seplyr")

Loading required package: wrapr

starwars %.>% select_se(., c("name", "height",
"mass")) %.>% arrange_se(., "desc(height)") %.>%
head(.)

A tibble: 6 x 3
name height mass
<chr> <int> <dbl>
1 Yarael Poof 264 NA
2 Tarfful 234 136
3 Lama Su 229 88
4 Chewbacca 228 112

an introduction to seplyr 3

5 Roos Tarpals 224 82
6 Grievous 216 159

For the common dplyr-verbs (excluding mutate(), which we will
discuss next) all the non-standard evaluation is saving us is a few
quote marks and array designations (and we have ways of getting
rid of the need for quote marks). In exchange for this small benefit
the non-standard evaluation is needlessly hard to program over. For
instance in the seplyr pipeline it is easy to accept the list of columns
from an outside source as a simple array of names.

Until you introduce a substitution system such as rlang or wrapr::let()
(which we recommend over rlang and publicly pre-dates the public re-
lease of rlang) you have some difficulty writing re-usable programs
that use the dplyr verbs over “to be specified later” column names.

We are presumably not the only ones who considered this a limita-
tion:

seplyr is an attempt to make programming a primary concern by
making the value-oriented (standard) interfaces the primary interfaces.

mutate()

The earlier “standard evaluation costs just a few quotes” becomes a
bit strained when we talk about the dplyr::mutate() operator. It
doesn’t seem worth the effort unless you get something more in return.
In seplyr 0.5.0 we introduced “the something more”: planning over
and optimizing dplyr::mutate() sequences.

A seplyr mutate looks like the following:

starwars %.>% select_se(., c("name", "height",
"mass")) %.>% mutate_se(., c(`:=`("height",
"height + 1"), `:=`("mass", "mass + 1"), `:=`("height",
"height + 2"), `:=`("mass", "mass + 2"), `:=`("height",
"height + 3"), `:=`("mass", "mass + 3"))) %.>%
arrange_se(., "name") %.>% head(.)

https://winvector.github.io/wrapr/reference/qc.html
https://winvector.github.io/wrapr/reference/qc.html
http://www.win-vector.com/blog/2017/06/non-standard-evaluation-and-function-composition-in-r/
https://CRAN.R-project.org/package=rlang
https://winvector.github.io/wrapr/articles/let.html
http://www.win-vector.com/blog/2017/11/let-xx-in-r/
http://www.win-vector.com/blog/2017/08/lets-have-some-sympathy-for-the-part-time-r-user/
http://www.win-vector.com/blog/2017/08/lets-have-some-sympathy-for-the-part-time-r-user/
https://github.com/tidyverse/dplyr/issues/352

an introduction to seplyr 4

A tibble: 6 x 3
name height mass
<chr> <dbl> <dbl>
1 Ackbar 186 89
2 Adi Gallia 190 56
3 Anakin Skywalker 194 90
4 Arvel Crynyd NA NA
5 Ayla Secura 184 61
6 Bail Prestor Organa 197 NA

seplyr::mutate_se() always uses “:=” to denote assignment
(dplyr::mutate() prefers “=” for assignment, except in cases where
“:=” is required).

The advantage is: once we are go to the trouble to capture the mu-
tate expressions we can treat them as data and apply procedures to
them. For example we can re-group and optimize the mutate assign-
ments.

plan <- partition_mutate_se(c(`:=`("name", "tolower(name)"),
`:=`("height", "height + 0.5"), `:=`("height",

"floor(height)"), `:=`("mass", "mass + 0.5"),
`:=`("mass", "floor(mass)")))

print(plan)

$group00001
name height
"tolower(name)" "height + 0.5"
mass
"mass + 0.5"
##
$group00002
height mass
"floor(height)" "floor(mass)"

Notice seplyr::partition_mutate_se() re-ordered and re-
grouped the assignments so that:

• In each group each value used is independent of values produced in
other assignments.

• All dependencies between assignments are respected by the group
order.

The “safe block” assignments can then be used in a pipeline:

starwars %.>% select_se(., c("name", "height",
"mass")) %.>% mutate_seb(., plan) %.>% arrange_se(.,
"name") %.>% head(.)

an introduction to seplyr 5

A tibble: 6 x 3
name height mass
<chr> <dbl> <dbl>
1 ackbar 180 83
2 adi gallia 184 50
3 anakin skywalker 188 84
4 arvel crynyd NA NA
5 ayla secura 178 55
6 bail prestor organa 191 NA

This may not seem like much. However, when using dplyr with
a SQL database (such as PostgreSQL or even Sparklyr) keeping the
number of dependencies in a block low is critical for correct calcula-
tion (which is why I recommend keeping dependencies low). Further-
more, on Sparklyr sequences of mutates are simulated by nesting of
SQL statements, so you must also keep the number of mutates at a
moderate level (i.e., you want a minimal number of blocks or groups).

Machine Generated Code

Because we are representing mutate assignments as user manipulable
data we can also enjoy the benefit of machine generated code. seplyr
0.5.* uses this opportunity to introduce a simple function named
if_else_device(). This device uses R’s ifelse() statement (which
conditionally chooses values in a vectorized form) to implement a more
powerful block-if/else statement (which conditionally simultaneously
controls blocks of values and assignments; SAS has such a feature).

For example: suppose we want to NA-out one of height or mass for
each row of the starwars data. This can be written naturally using
the if_else_device.

if_else_device(testexpr = "runif(n())>=0.5", thenexprs = `:=`("height",
"NA"), elseexprs = `:=`("mass", "NA"))

ifebtest_hp6m6oxb0xy0
"runif(n())>=0.5"
height
"ifelse(ifebtest_hp6m6oxb0xy0, NA, height)"
mass
"ifelse(!(ifebtest_hp6m6oxb0xy0), NA, mass)"

Notice the if_else_device translates the user code into a se-
quence of dplyr::mutate() expressions (using only the weaker op-
erator ifelse()). Obviously the user could perform this translation,
but if_else_device automates the record keeping and can even be
nested. Also many such steps can be chained together and broken into

https://github.com/WinVector/Examples/blob/master/dplyr/Dependencies.md
https://github.com/WinVector/Examples/blob/master/dplyr/Dependencies.md
http://www.win-vector.com/blog/2017/09/my-advice-on-dplyrmutate/
http://www.win-vector.com/blog/2017/11/vectorized-block-ifelse-in-r/
http://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a000201978.htm
https://winvector.github.io/seplyr/reference/if_else_device.html
https://winvector.github.io/seplyr/reference/if_else_device.html

an introduction to seplyr 6

a minimal sequence of blocks by partition_mutate_se() (not forcing
a new dplyr::mutate() step for each if-block encountered).

When we combine the device with the partitioned we get perfor-
mant database-safe code where the number of blocks is only the level
of variable dependence (and not the possibly much larger number of
initial value uses that a straightforward non-reordering split would
give; note: seplyr::mutate_se() 0.5.1 and later incorporate the
partition_mutate_se() in mutate_se()).

starwars %.>% select_se(., c("name", "height",
"mass")) %.>% mutate_se(., if_else_device(testexpr = "runif(n())>=0.5",
thenexprs = `:=`("height", "NA"), elseexprs = `:=`("mass",

"NA"))) %.>% arrange_se(., "name") %.>%
head(.)

A tibble: 6 x 4
name height mass
<chr> <int> <dbl>
1 Ackbar 180 NA
2 Adi Gallia 184 NA
3 Anakin Skywalker 188 NA
4 Arvel Crynyd NA NA
5 Ayla Secura 178 NA
6 Bail Prestor Organa NA NA
... with 1 more variables:
ifebtest_eaqzmiio1u3n <lgl>

Conclusion

The value oriented notation is a bit clunkier, but this is offset by it’s
greater flexibility in terms of composition and working parametrically.

Our group has been using seplyr::if_else_device() and seplyr::partition_mutate_se()
to greatly simplify porting powerful SAS procedures to R/Sparklyr/Apache
Spark clusters.

This is new code, but we are striving to supply sufficient initial
documentation and examples.

http://www.win-vector.com/blog/2017/11/win-vector-llc-announces-new-big-data-in-r-tools/

	Introduction
	Standard Evaluation and Non-Standard Evaluation
	dplyr and seplyr
	mutate()
	Machine Generated Code
	Conclusion

