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As part of our consulting practice Win-Vector LLC has been help-
ing a few clients stand-up advanced analytics and machine learning
stacks using R and substantial data stores (such as relational database
variants such as PostgreSQL or big data systems such as Spark).

Often we come to a point where we or a partner realize: “the design
would be a whole lot easier if we could phrase it in terms of higher
order data operators.”

The R package DBI gives us direct access to SQL and the package
dplyr gives us access to a transform grammar that can either be
executed or translated into SQL.

But, as we point out in the replyr README: moving from in-
memory R to large data systems is always a bit of a shock as you lose
a lot of your higher order data operators or transformations. Missing
operators include:

o union (binding by rows many data frames into a single data frame).
o split (splitting a single data frame into many data frames).
e pivot (moving row values into columuns).

e un-pivot (moving column values to rows).

I can repeat this. If you are an R user used to using one of dplyr: :bind_rows ()
, base: :split (), tidyr: :spread(), or tidyr: :gather(): you will
find these functions do not work on remote data sources, but have

replacement implementations in the replyr and cdata packages.
For example:

library("RPostgreSQL")
## Loading required package: DBI

suppressPackageStartupMessages (library("dplyr"))
isSpark <- FALSE

# # Can work with PostgreS(L
# my_db <- DBI::dbConnect (dbDriver("PostgreSQL"),

# host = 'localhost'’,
# port = 5432,

# user = 'postgres’,
# password = 'pg')

# Can work with Sparklyr
my_db <- sparklyr::spark_connect(version='2.2.0',

master = "local")


http://www.win-vector.com/
https://www.r-project.org/
https://CRAN.R-project.org/package=DBI
https://CRAN.R-project.org/package=dplyr
https://winvector.github.io/replyr/
https://cran.r-project.org/web/packages/replyr/README.html
https://winvector.github.io/cdata/
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## Warning in yaml.load(readLines(con),

## error.label = error.label, ...): R

## expressions in yaml.load will not be auto-
## evaluated by default in the near future

## Warning in yaml.load(readLines(con),

## error.label = error.label, ...): R

## expressions in yaml.load will not be auto-
## evaluated by default in the near future

## Warning in yaml.load(readLines(con),
## error.label = error.label, ...): R
## expressions in yaml.load will not be auto-

## evaluated by default in the near future

isSpark <- TRUE

d <- dplyr::copy_to(my_db, data.frame(x = c(1,5),
group = c('gl', 'g2'),
stringsAsFactors = FALSE),
ldl)
knitr: :kable(d)

X  group
1 gl
5 g2

# show dplyr::bind_rows() fails.
dplyr: :bind_rows(list(d, d))

## Error in bind_rows_(x, .id): Argument 1 must be a data frame or a named atomic vector, not a tbl_spa

The replyr and cdata packages supply R accessible implemen-
tations of these missing operators for large data systems such as
PostgreSQL and Spark.

For example

# using the development verstion of replyr https://github.com/WinVector/replyr
library("replyr")

## Loading required package: seplyr
## Loading required package: wrapr

## Loading required package: cdata
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packageVersion("replyr")
## [1] '0.9.1"

# binding mTows
dB <- replyr_bind_rows(list(d, d))
knitr: :kable(dB)

group

b
1 gl
5 g2
1 gl
5 g2

# splitting frames
replyr_split(dB, 'group')

## $g2

## # Source:

## #  table<replyr_gapply_ju4flzuvur210g2ryikf_ 0000000001>
## # [?? x 2]

## # Database: spark_connection

## X group

##  <dbl> <chr>

## 1 5.00 g2

## 2 5.00 g2

#i#

## $gi1

## # Source:

## #  table<replyr_gapply_ju4flzuvur210g2ryikf_ 0000000003>
## # [??7 x 2]

## # Database: spark_connection

## X group

##  <dbl> <chr>

## 1 1.00 gl

## 2 1.00 gl

# pivoting
pivotControl <-
cdata: :build_pivot_control_q('d’,

columnToTakeKeysFrom = 'group',
columnToTakeValuesFrom = 'x',
sep = '_',

my_db = my_db)
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dWname <-
cdata: :blocks_to_rowrecs_q(keyColumns = NULL,
controlTable = pivotControl,
tallTable = 'd',
my_db = my_db, strict = FALSE)
dW <- dplyr::tbl(my_db, dWname)
knitr: :kable(dW)

group_ g2 group_ gl

) 1
# un—-pitvoting
unpivotControl <-
cdata: :build_unpivot_control (nameForNewKeyColumn = 'group',
nameForNewValueColumn = 'x',

columnsToTakeFrom = colnames(dW))
dXname <-
cdata: :rowrecs_to_blocks_q(controlTable = unpivotControl,
wideTable = dWname,
my_db = my_db)
dX <- dplyr::tbl(my_db, dXname)
knitr: :kable(dX)

group X
group_g2 5
group_gl 1

The point is: using the replyr and cdata packages you can design
in terms of higher-order data transforms, even when working with big
data in R. Designs in terms of these operators tend to be succinct,
powerful, performant, and maintainable.

To master the terms rowrecs_to_blocks and blocks_to_rowrecs
I suggest trying the following two articles:

e Theory of coordinatized data.
e Fluid data transforms.

if (isSpark) {
status <- sparklyr::spark_disconnect (my_db)
} else {
status <- DBI::dbDisconnect (my_db)
}
my_db <- NULL


http://winvector.github.io/FluidData/RowsAndColumns.html
http://winvector.github.io/FluidData/FluidData.html

