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Differential Privacy
• Secure Analysis over Sensitive 
Data


• 2006: AOL Search Data 
“Anonymized” Release


• Netflix Data


• Can we analyze data without 
leaking information?

Thelma Arnold, User #4417749



Win-Vector LLC

Useful Aggregations

Sensitive
Data

Analysis 
Procedure Model

Statistical
Query

Answer
(Aggregation)

•Mixed Success in Analysis 
•Recent Results for Machine Learning 
•Differential Privacy to Reuse Test Data 
•Reduce Upward Bias in Model Evaluation
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Outline

• Define Differential Privacy


• Give an example of Recent Results


• Reusable Hold-out


• Nested Models
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S
Q:

“Is A(s) > T?”

A(s)
or

A(s) > T

S’

Adversary: 
Picks S, S’ 
and Q (or T)

Learner: 
Implements A(s)

Based on answer,
Adversary guesses if 
Learner is working on S 
or S’

S and S’ differ by 
only one row

The Differential Privacy Game

Assume A() returns a value in 
[0,1] 

Assume Q is the interval (T 1] 
(so adversary picks T)
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S
Q:

“Is A(s) > T?”

A(s)
or

A(s) > T

S’

Adversary: 
Picks S, S’ 
and Q (or T)

Learner: 
Implements A(s)

Based on answer,
Adversary guesses if 
Learner is working on S 
or S’

S and S’ differ by 
only one row

The Differential Privacy Game
Over many rounds of the 
game (with the same S, S’): 

A(S) > T with probability p 
A(S’) > T with probability p’ 

If p >> p’ (or vice versa), 
adversary usually wins. 

If p/p’ ∼1, adversary can’t do 
better than random guesses.
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S
Q:

“Is A(s) > T?”

A(s)
or

A(s) > T

S’

Adversary: 
Picks S, S’ 
and Q (or T)

Learner: 
Implements A(s)

Based on answer,
Adversary guesses if 
Learner is working on S 
or S’

S and S’ differ by 
only one row

ε-Differential Privacy

����log
✓
Prob[A(S) 2 Q]

Prob[A(S0) 2 Q]

◆����  ✏

A() is ε-differentially Private if

for all choices of S, S’, Q

In English: A(S) looks a lot 
like A(S’)
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Example
• A(s) : returns the approximate mean value of s


• S: {0,0,…,0} (100 zeros)


• S’: {1,0,…,0} (1 one, 99 zeros)


• Adversary picks T so that if A(s)>T, s is S’

 (with high probability)
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Deterministic Algorithm

Deterministic Case:

A(s) = E(s)

• A(S) = 0, A(S’) = 0.01


• Adversary picks T=0.005


• Not differentially private for 
any ε.
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Noised Algorithm, small noise term

Add Noise

• Laplacian Noise: L(0, σ)

• σ = 1/3n 


• Now sometimes A(S) > T


• Need more noise
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Noised Algorithm, large noise term

Add More Noise

• Need σ > 1/n


• σ = 3/n = 0.03


• Now often A(S) > T


• If R = ratio of green:orange


 log(abs(R)) = ε
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Stricter ε : A(S) → A(S’)

• We can simulate the game I 
described

•  https://github.com/WinVector/
Examples/blob/master/DiffPriv/
DiffPrivExample.R


• 1000 rounds


• A(S) and A(S’) get closer 
(in % difference)
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Stricter ε : Estimates Poorer

• E(S) = 0; E(S’) = 0.01


• Hard to balance privacy 
and good analysis!
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Differential Privacy Applied to 
Reusable Holdout Data

• Standard ML Practice: Training/Test split

• or Training/Calibration/Test


• Ideally: Look at Test only once


• In practice: Look at Test, tweak model, look at Test…


• Upward-biased performance estimates on Training 
— and Test
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How Many Times Can You Use 
The Test Set?

• In Theory: exp(N) times, where N is size of Test


• In Practice: N*N times —non-adaptively

• not true if you tune model after a query


• New results: N*N times adaptively 
• Dwork, Feldman, Hardt, Pitassi, Reingold, Roth, 2015



Win-Vector LLC

The Idea

• Use differential privacy to evaluate candidate 
models on holdout sets “without looking at data.”


• Reduce the bias from test set performance 
estimates: test set estimates should approximate 
true out-of-sample performance.
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Example: Stepwise Regression
• Use the training set to train a model with k 
parameters, and the test set to evaluate its accuracy, 
and pick the best (most improved) k-parameter 
model.


• Greedy: kth-step uses previous best k-1 parameters


• Run until k=50
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Experiment
• Simulated data 


• Binary classification (50% positive class)


• 110 candidate variables


• 10 with signal, 100 with pure noise


• 1000 rows training, 1000 rows test


• Estimate true out-of-sample performance with “fresh” set of 10,000 
rows
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Naive method, test size=1000

Naive Method

• Test set more up-biased 
than training!


• Algorithm only picked 1 
signal variable (the first)


• Neither test nor training 
sets estimate true model 
performance
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Δ < tolerance? Yes

No

Imp(Train) 
[+ L(0, σ1)]

Imp(Test) + L(0, σ2)

Δ = | Imp(Train) - Imp(Test) |

Thresholdout
• Goal — Use Test to both:

• Evaluate models

• Estimate out-of-sample model 
performance


• Improvement: 

 Accuracy(k) - Accuracy(k-1)


• Tolerance:

 σ/2 + L(0, σ/2)


• Never directly inspect Test, so leak 
information slower


Dwork, Feldman, Hardt, Pitassi, Reingold, Roth, 2015
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Differential Privacy, test size = 1000

Result

• Test performance tracks 
Fresh performance


• Found all 10 signal variables

• But started picking noise early

• Last signal variable: #36


• Peak accuracy ~61%
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For Comparison: 

LARGE Test Set

• N=10,000, no DP


• Found 9 signal variables 
immediately


• Accuracy ~62.5% (9 vars)


• Test set only slightly 
upwardly biased

• So large, we don’t 
contaminate it much
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Takeaways
• Can think of Thresholdout as simulating a larger test set.


• DP designed to minimize excess generalization error — 
not find best possible model


• The two are related, of course


• Stepwise Regression is dangerous


• LOTS of queries
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Differential Privacy applied 

to Nested Models

yx1 x2 x3 x4 x5 x6

yx1 x2 x3 x4 x5 x6

yx1 x2 x3 x4 x5 x6

yx1 x2 x3 x4 x5 x6

yx1 x2 x3 x4 x5 x6

yx1 x2 x3 x4 x5 x6

yx1 x2 x3 x4 x5 x6

Build Submodel

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

Build Full 
Model

ModelSubmodel
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Example: Effects Coding

• For categorical variables with 
many levels.

• K levels = K-1 indicator vars


• Re-encode the categorical 
variable as a few numerical 
variables.

Make_Model Price … SoldInWeek

VW_Golf $26,000 … Yes

Mazda_Miata $24,000 … No

VW_Golf $32,000 … Yes

Toyota_Prius $21,500 … No
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Bayesian Model or 

Model by Counts

Make_Model P(SoldIn
Week)

Impact

VW_Golf 0.6 0.2

Mazda_Miata 0.34 -0.06

Chevy_Camaro 0.16 -0.24

Toyota_Prius 0.72 0.32

Lotus_Elise 1.0 0.6

… … …

Overall 0.4 0

Make_Model N_SoldIn
Week

N_NotSold
InWeek

LogDiff IsRare

VW_Golf 60 40 0.41 No

Mazda_Miata 68 132 -0.66 No

Chevy_Camaro 8 42 -1.6 No

Toyota_Prius 108 42 0.94 No

Lotus_Elise 1 0 1E+06 Yes

… … …

Bayesian Model by Counts
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Can’t use Training Data to 
Effects Code!

• Effects model can 
memorize the training data


• “Lotus Elise always 
sells in a week”


• Full model may 
overestimate the value of 
effects-coded variable


• Overfit

yx3 x4 x5 x6

yx3 x4 x5 x6

yx3 x4 x5 x6

yx3 x4 x5 x6

yx3 x4 x5 x6

yx3 x4 x5 x6

yx3 x4 x5 x6

Build Effects 
Model

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

ysm1 x4 x5 x6

Build Full 
Model

ModelEffects 
Model
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Training the Effects Model

yx3 x4 x5 x6

yx3 x4 x5 x6

yx3 x4 x5 x6

Build Effects 
Model

sm1

sm1

sm1

sm1

yx4 x5 x6

yx4 x5 x6

yx4 x5 x6

yx4 x5 x6

Build Full 
Model

Model

Effects 
Model

x3

x3

Calibration Set

x3

x3

yx4 x5 x6

yx4 x5 x6

yx4 x5 x6

yx4 x5 x6

Training Set

Effects 
Model

Best Solution: 
A separate 

calibration set for 
effects model
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Alternative Solution:

 Prune Rare Levels

Make_Model P(SoldIn
Week)

Impact Nobsv

VW_Golf 0.6 0.2 100

Mazda_Miata 0.34 -0.06 200

Chevy_Camaro 0.16 -0.24 50

Toyota_Prius 0.72 0.32 150

Lotus_Elise 1.0 0.6 1

Yugo_GV 0.33 -0.07 3

… … … …

Overall 0.4 0 N

Make_Model Impact

VW_Golf 0.2

Mazda_Miata -0.06

Chevy_Camaro -0.24

Toyota_Prius 0.32

Lotus_Elise 0

Yugo_GV 0

… …

Better: use significance of conditional estimate
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Innovative Solution: 

Differential Privacy

Add noise to training data before passing to effects coding
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Example
• Synthetic data, 2000 rows training


• 40 categorical variables


•10 signal variables with 10 levels each


• 30 noise variables with 500 levels each


• Classification: Positive class 50% prevalence


• Effects code the variables, then fit a logistic regression model
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Naive Modeling
In Training: both models perfect (AUC = 1)
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With Laplace Noise

In Training: AUC = 0.95 In Training: AUC = 0.96
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With Calibration Set

Bayesian model: 
In Training: AUC = 0.91
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All training data and rare level 
pruning

Bayesian model: 
In Training: AUC = 0.95
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Takeaways
• Differential privacy alleviates the overfit from effects 
coding (or nested models in general) by masking rare 
phenomena.


• DP is a useful alternative when there’s not enough 
data for a calibration set.

• Or for online situations (with learning by counts)

• For batch, rare level pruning also works well
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Thank You


