A Simpler Explanation of Differential Privacy and Its Applications to Machine Learning

> Nina Zumel Win-Vector, LLC December 2, 2015

Differential Privacy

 Secure Analysis over Sensitive Data

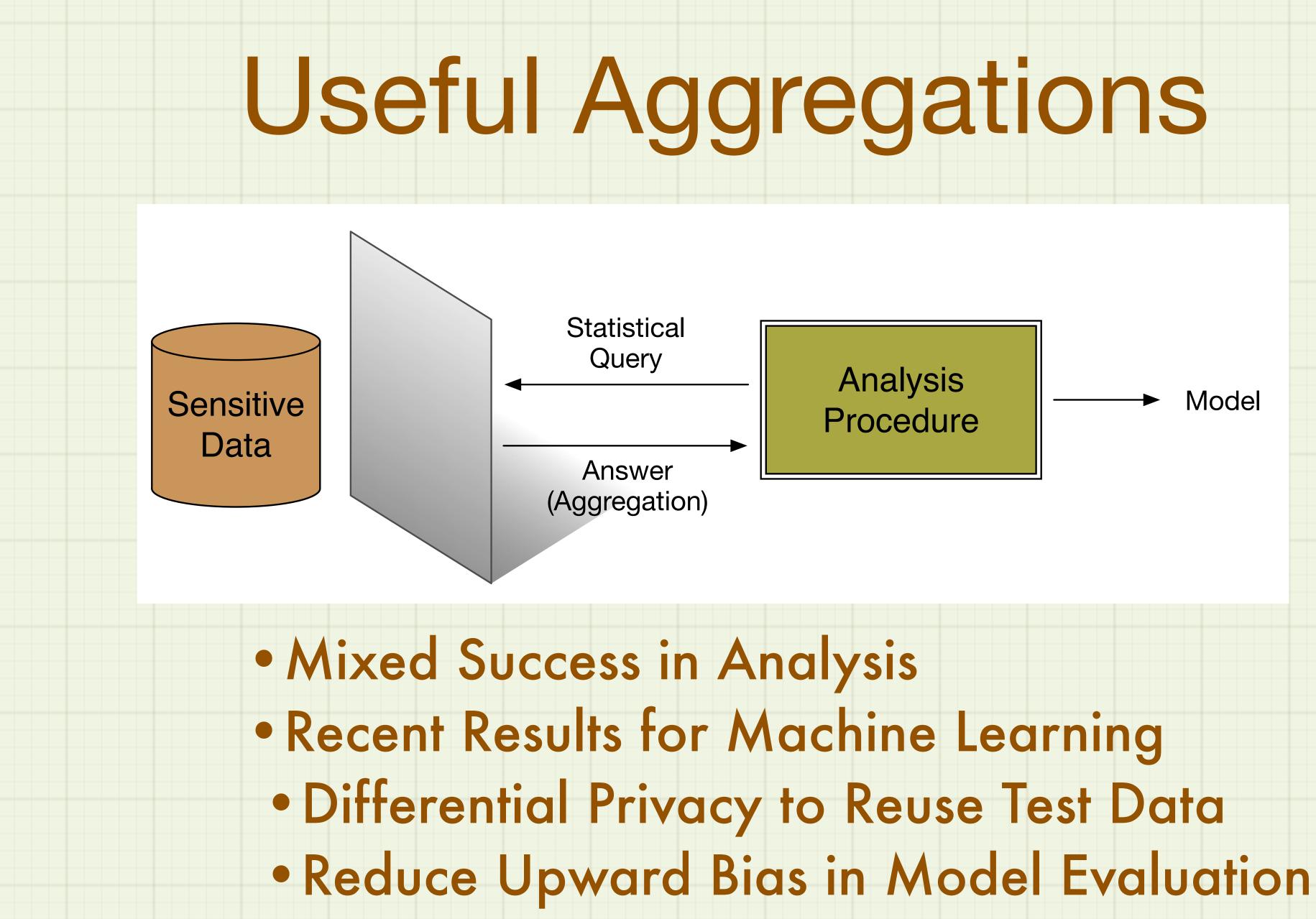
2006: AOL Search Data
 "Anonymized" Release

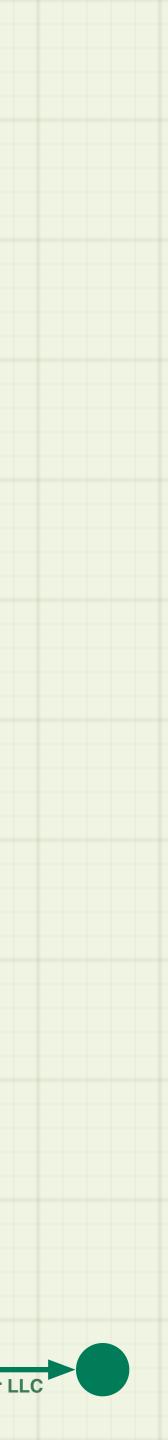
Netflix Data

 Can we analyze data without leaking information?



Thelma Arnold, User #4417749





Outline

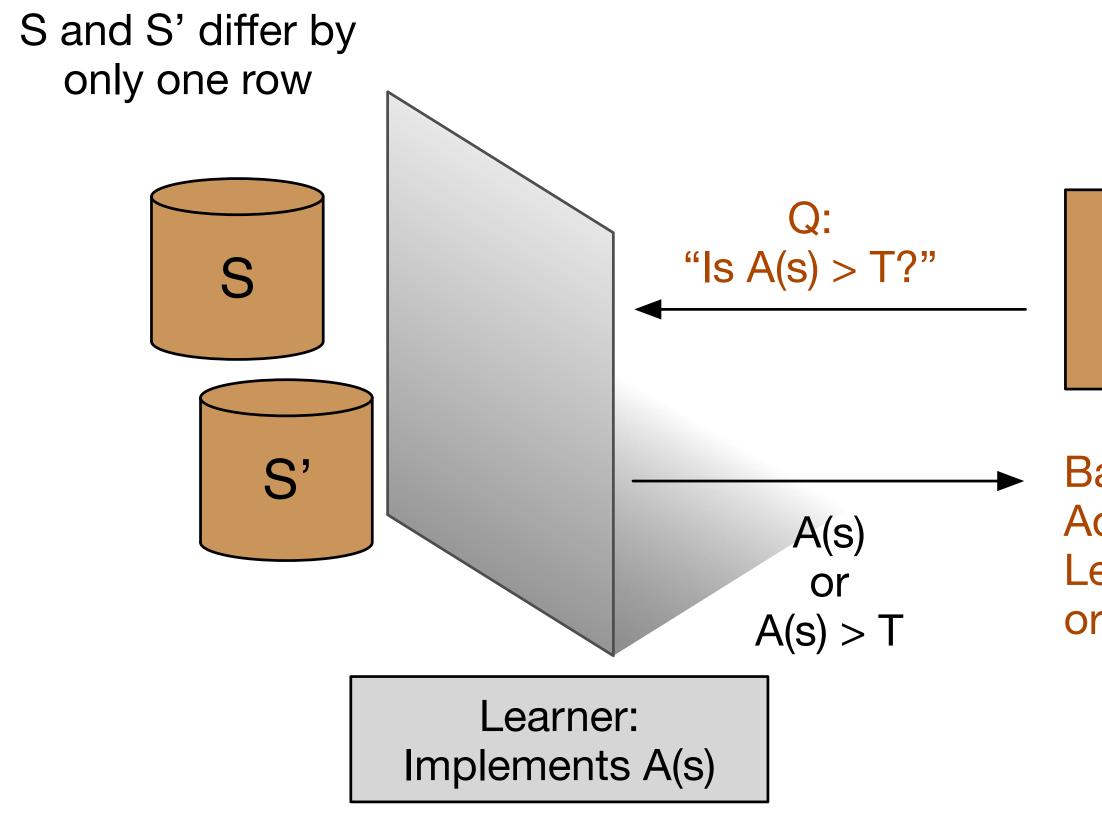
Define Differential Privacy

Give an example of Recent Results

Reusable Hold-out

Nested Models

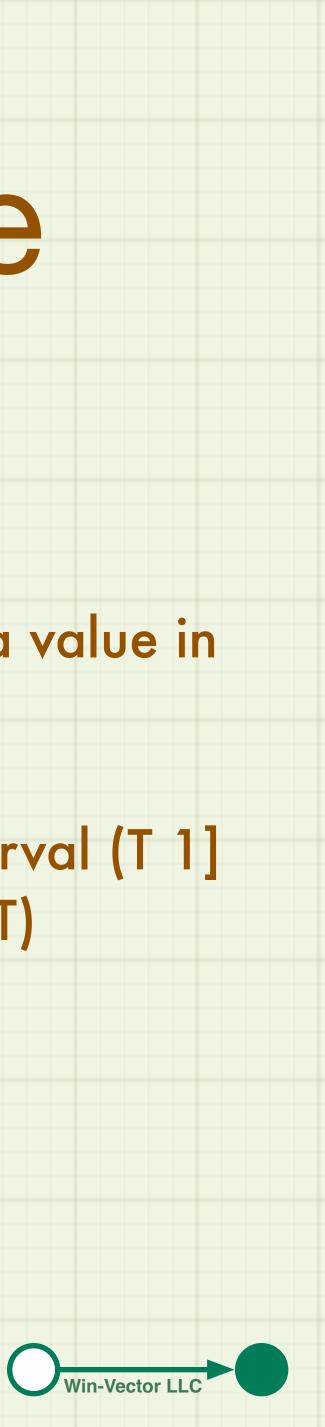
The Differential Privacy Game



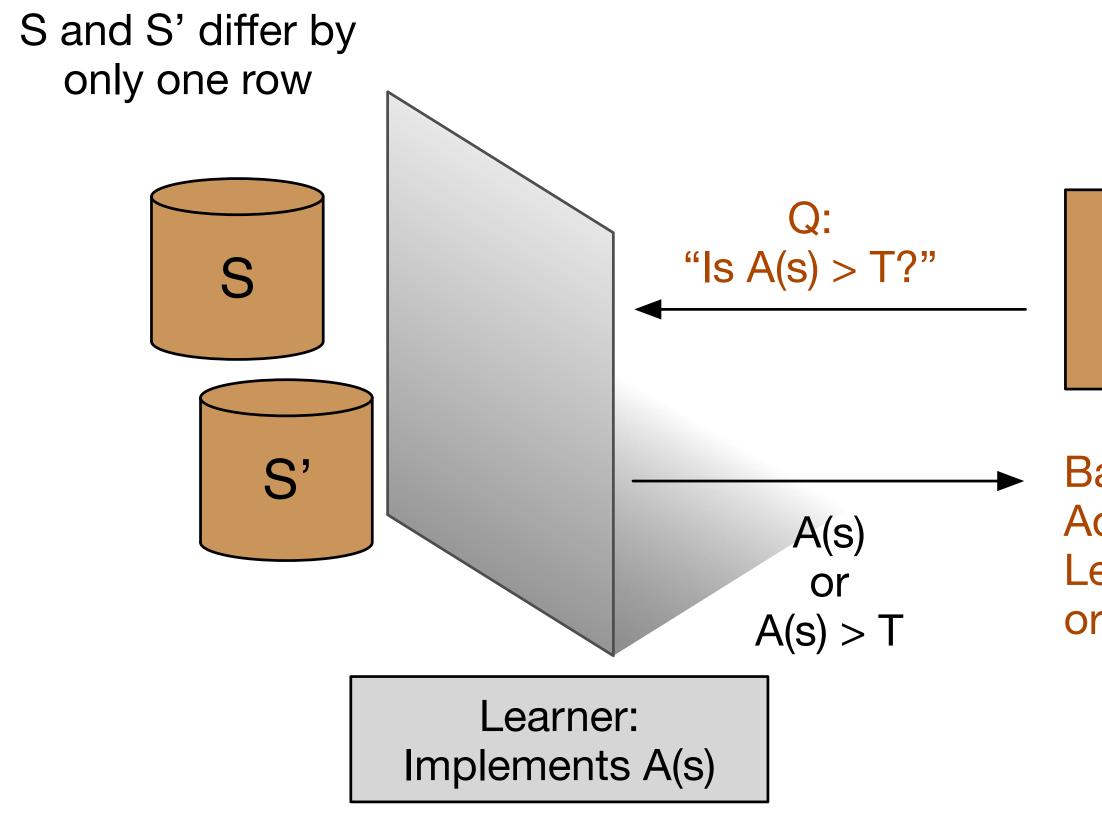
Adversary: Picks S, S' and Q (or T)

Based on answer, Adversary guesses if Learner is working on S or S' Assume A() returns a value in [0,1]

Assume Q is the interval (T 1] (so adversary picks T)



The Differential Privacy Game



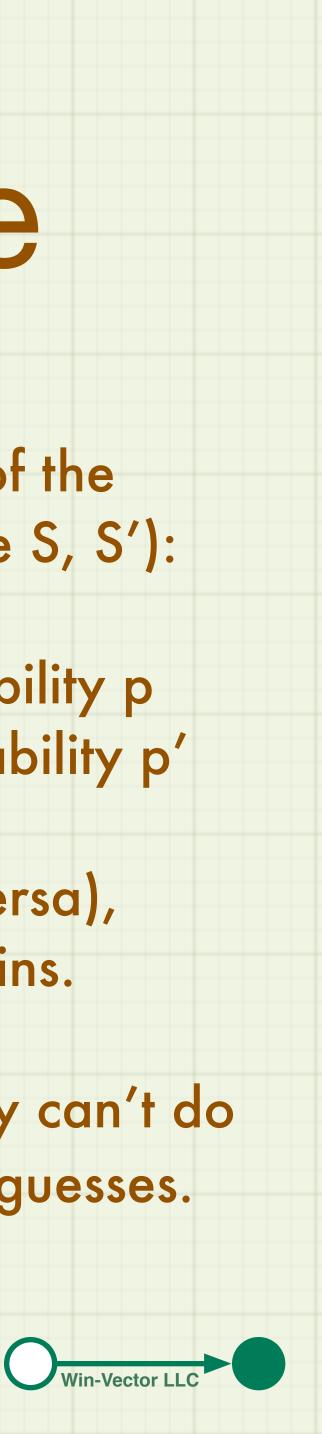
Adversary: Picks S, S' and Q (or T)

Based on answer, Adversary guesses if Learner is working on S or S' Over many rounds of the game (with the same S, S'):

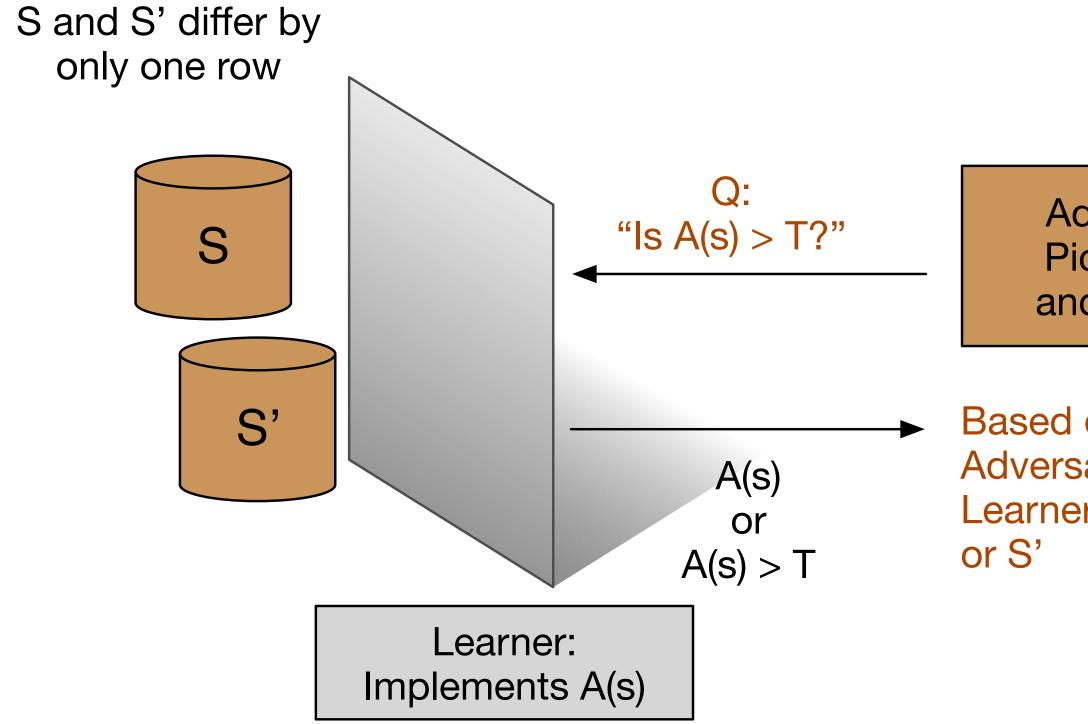
A(S) > T with probability p A(S') > T with probability p'

If p >> p' (or vice versa), adversary usually wins.

If p/p'~1, adversary can't do better than random guesses.



ε-Differential Privacy

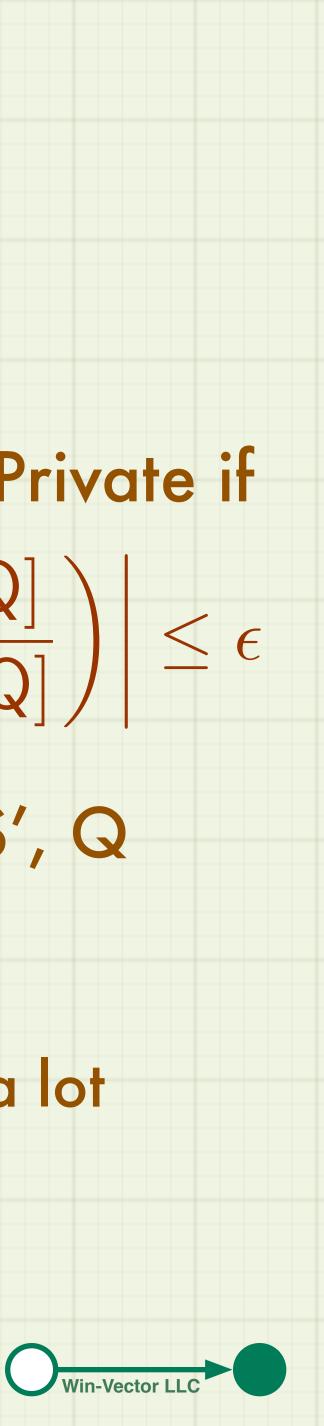


Adversary: Picks S, S' and Q (or T)

Based on answer, Adversary guesses if Learner is working on S A() is ε -differentially Private if $\left|\log\left(\frac{\operatorname{Prob}[A(S) \in Q]}{\operatorname{Prob}[A(S') \in Q]}\right)\right| \leq \epsilon$

for all choices of S, S', Q

In English: A(S) looks a lot like A(S')



Example

• A(s) : returns the approximate mean value of s

• S: {0,0,...,0} (100 zeros)

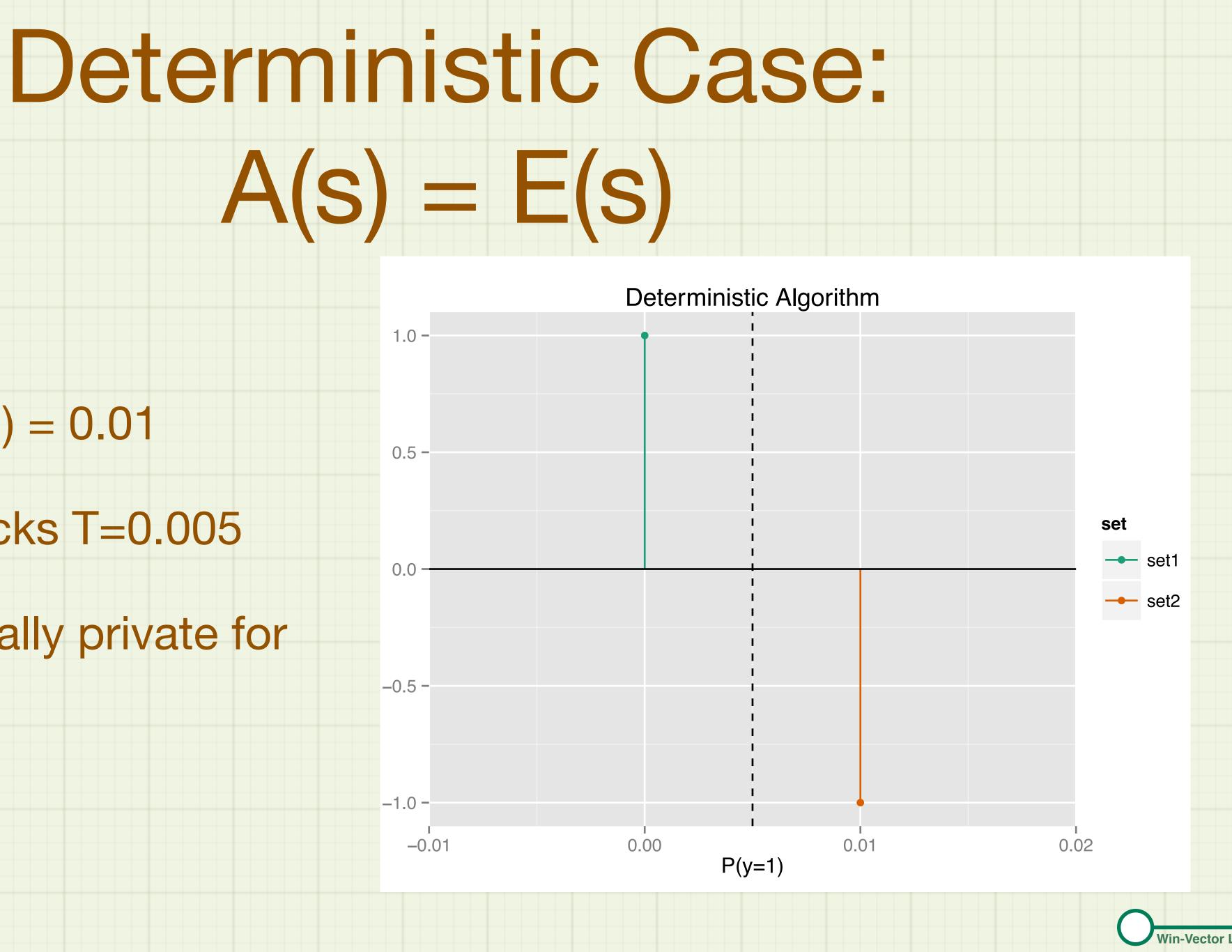
• S': {1,0,...,0} (1 one, 99 zeros)

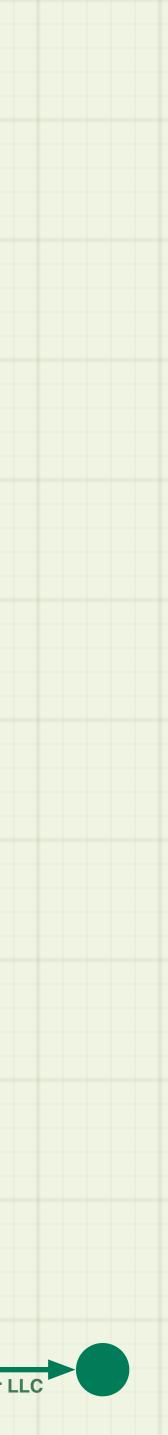
 Adversary picks T so that if A(s)>T, s is S' (with high probability)

• A(S) = 0, A(S') = 0.01

Adversary picks T=0.005

 Not differentially private for any ε.



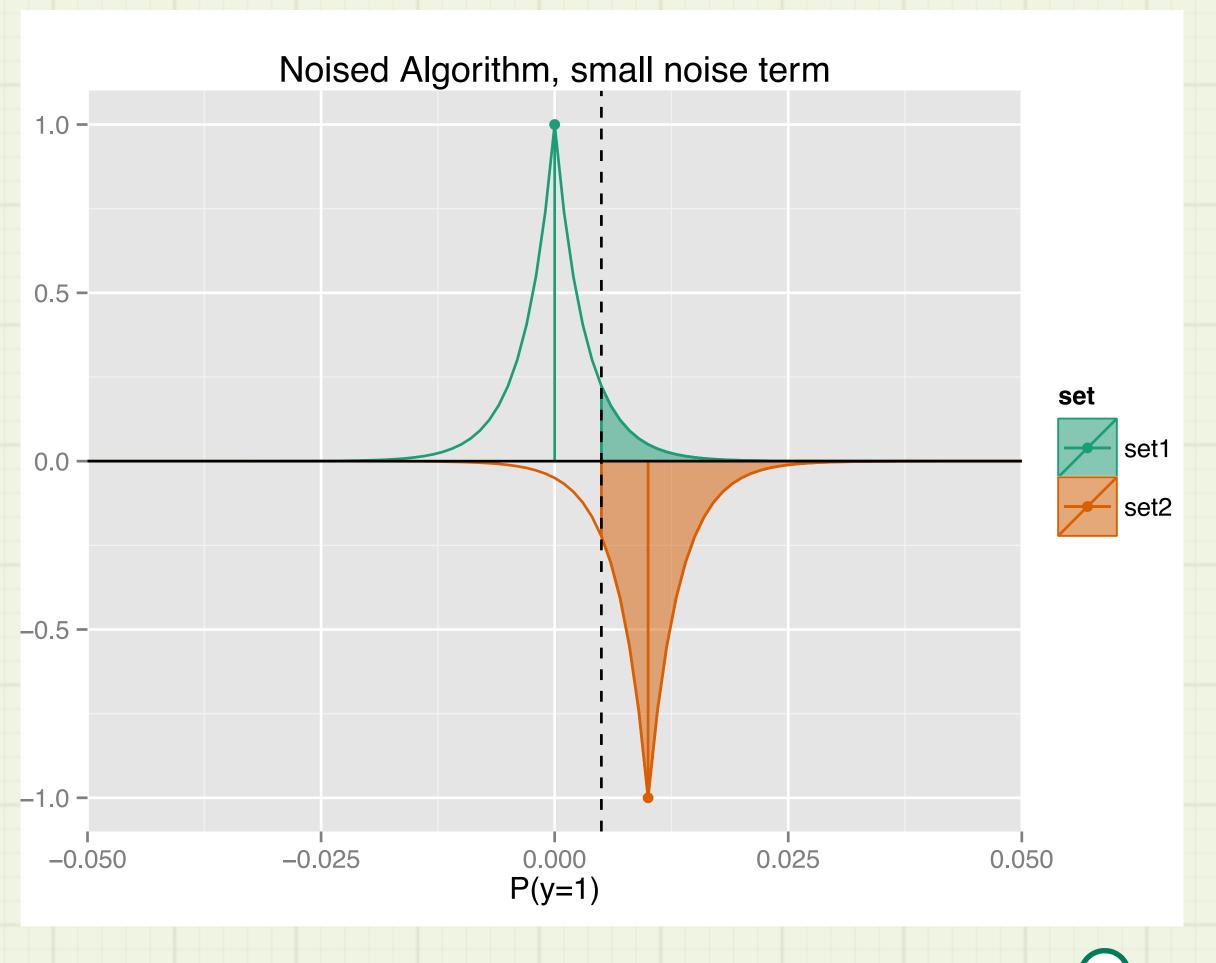


 Laplacian Noise: L(0, σ) • $\sigma = 1/3n$

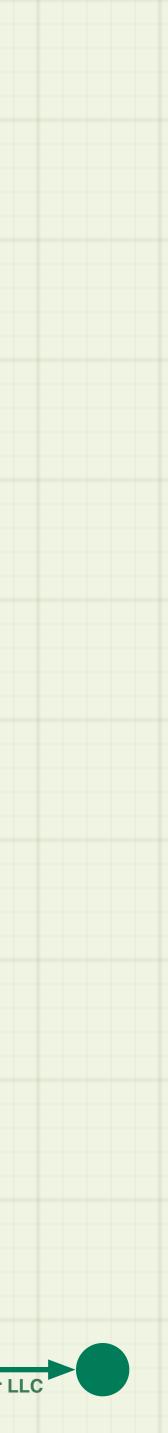
• Now sometimes A(S) > T

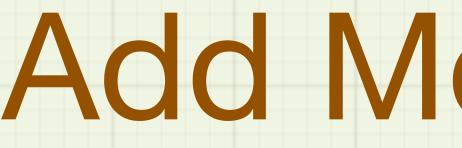
• Need more noise

Add Noise



Win-Vector LI

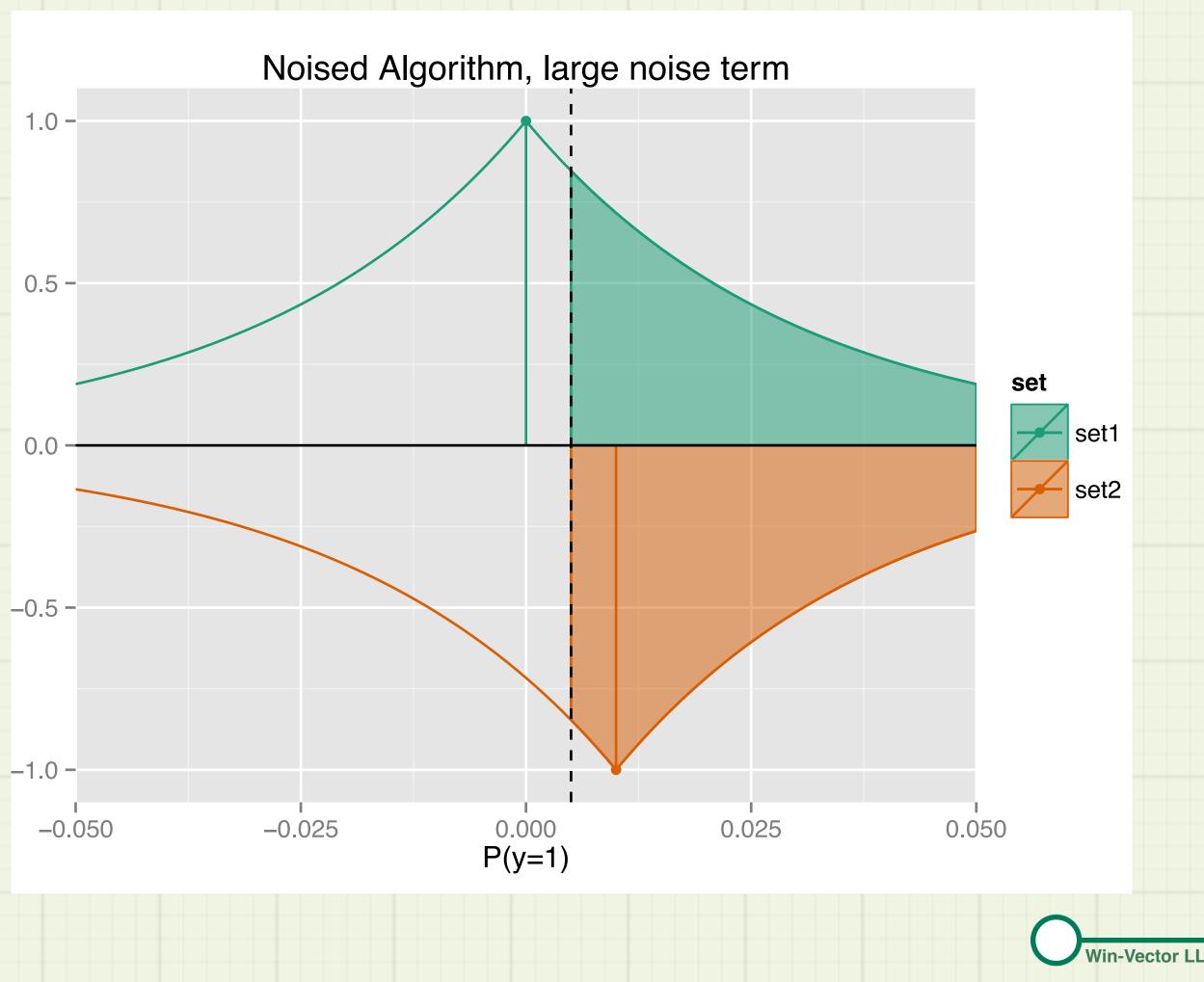




- Need $\sigma > 1/n$
- $\sigma = 3/n = 0.03$
- Now often A(S) > T
- If R = ratio of green:orange

 $log(abs(R)) = \varepsilon$

Add More Noise



 We can simulate the game I described

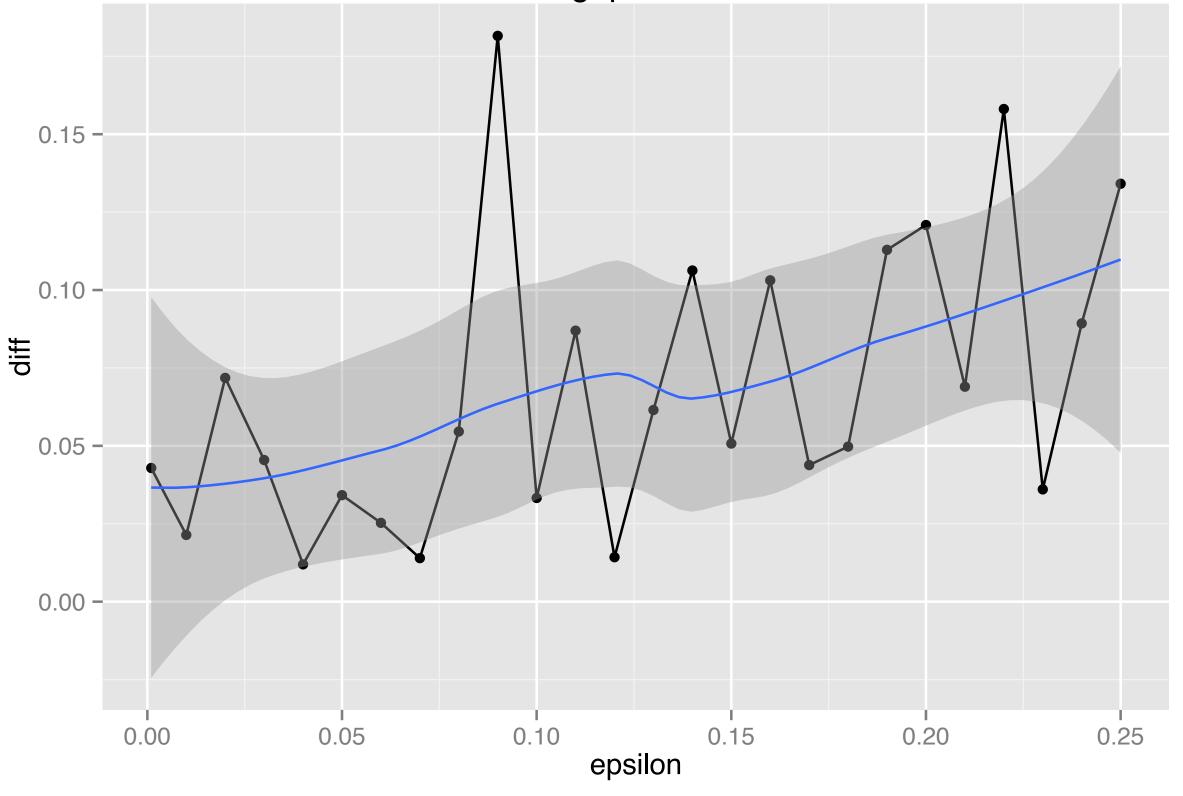
 https://github.com/WinVector/ Examples/blob/master/DiffPriv/ DiffPrivExample.R

1000 rounds

• A(S) and A(S') get closer (in % difference)

Stricter $\varepsilon : A(S) \rightarrow A(S')$

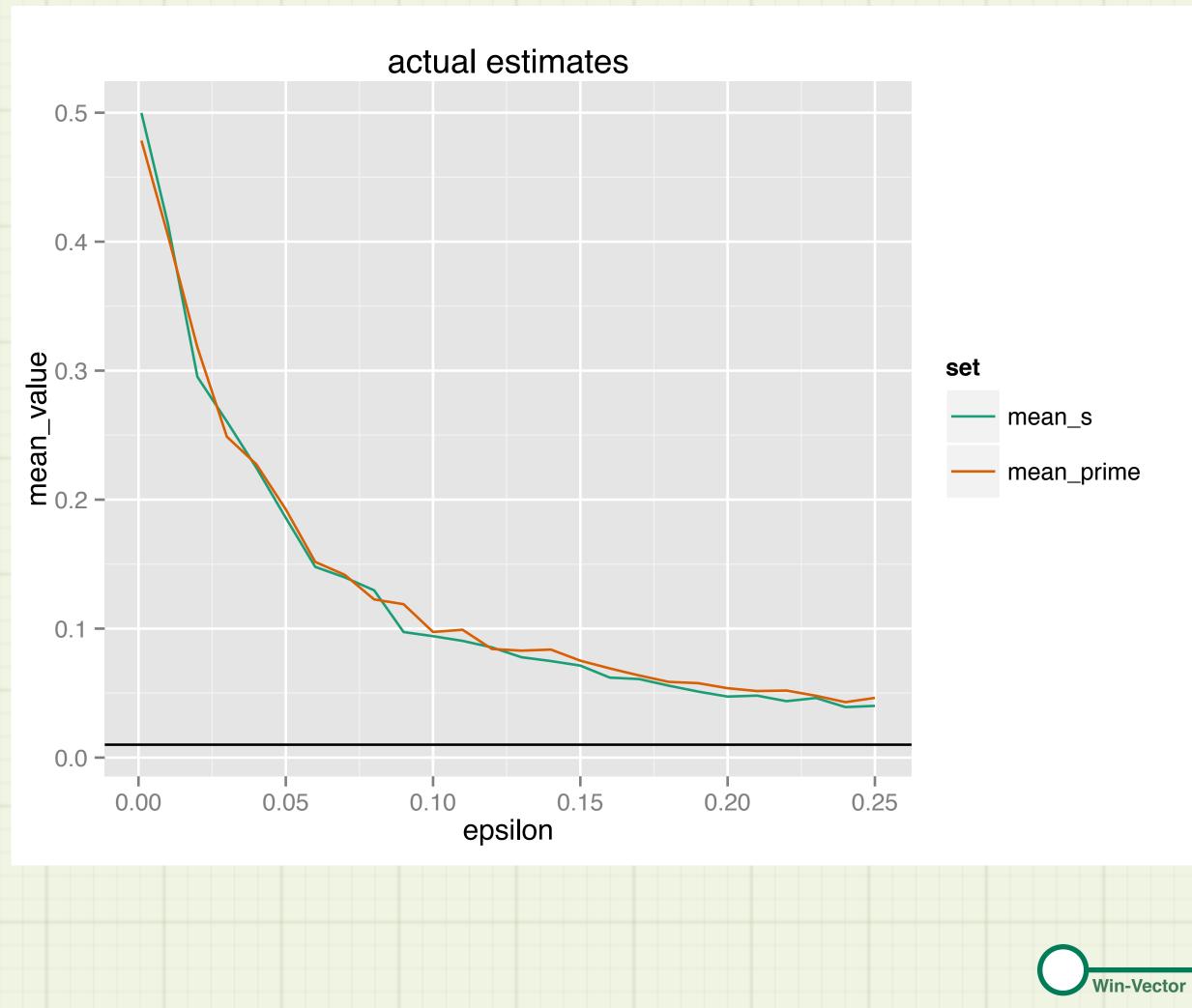
relative gap in estimates



Stricter ϵ : Estimates Poorer

• E(S) = 0; E(S') = 0.01

 Hard to balance privacy and good analysis!

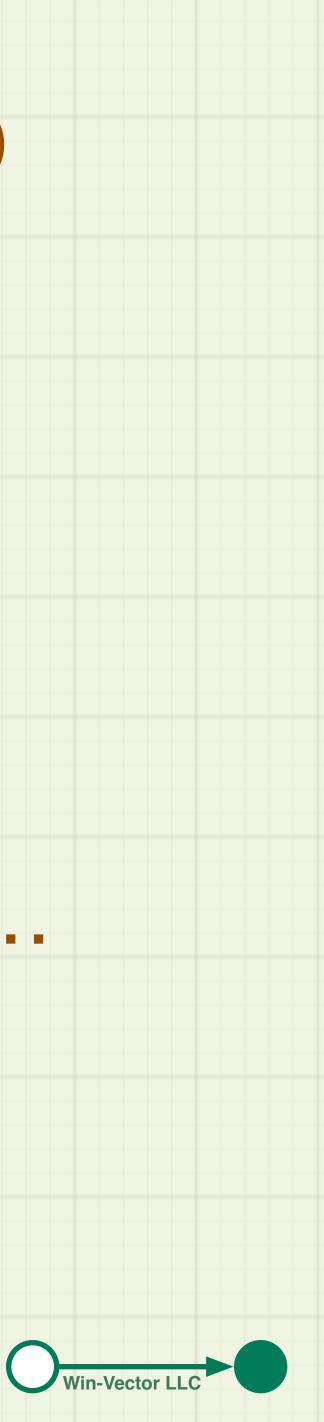


Differential Privacy Applied to Reusable Holdout Data Standard ML Practice: Training/Test split or Training/Calibration/Test

Ideally: Look at Test only once

In practice: Look at Test, tweak model, look at Test...

 Upward-biased performance estimates on Training — and Test



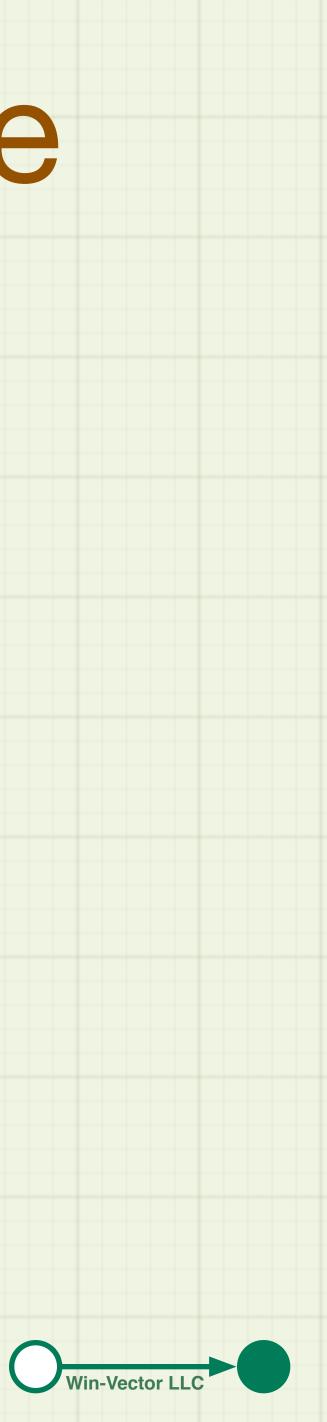
How Many Times Can You Use The Test Set?

In Theory: exp(N) times, where N is size of Test

 In Practice: N*N times — non-adaptively not true if you tune model after a query

New results: N*N times adaptively

• Dwork, Feldman, Hardt, Pitassi, Reingold, Roth, 2015



Use differential privacy to evaluate candidate

 Reduce the bias from test set performance estimates: test set estimates should approximate true out-of-sample performance.

The Idea

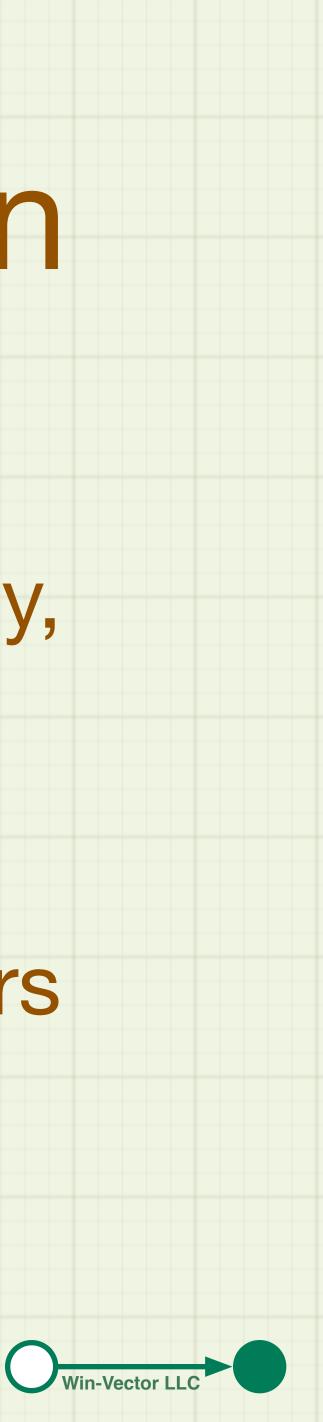
models on holdout sets "without looking at data."

Example: Stepwise Regression

 Use the training set to train a model with k parameters, and the test set to evaluate its accuracy, and pick the best (most improved) k-parameter model.

Greedy: kth-step uses previous best k-1 parameters

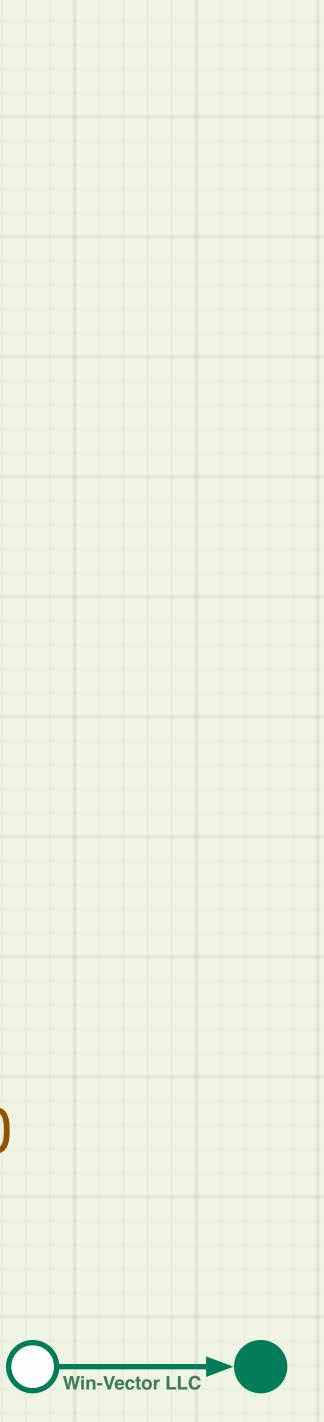
• Run until k=50



Experiment

- Simulated data
- Binary classification (50% positive class)
- 110 candidate variables
 - 10 with signal, 100 with pure noise
- 1000 rows training, 1000 rows test
- rows

• Estimate true out-of-sample performance with "fresh" set of 10,000

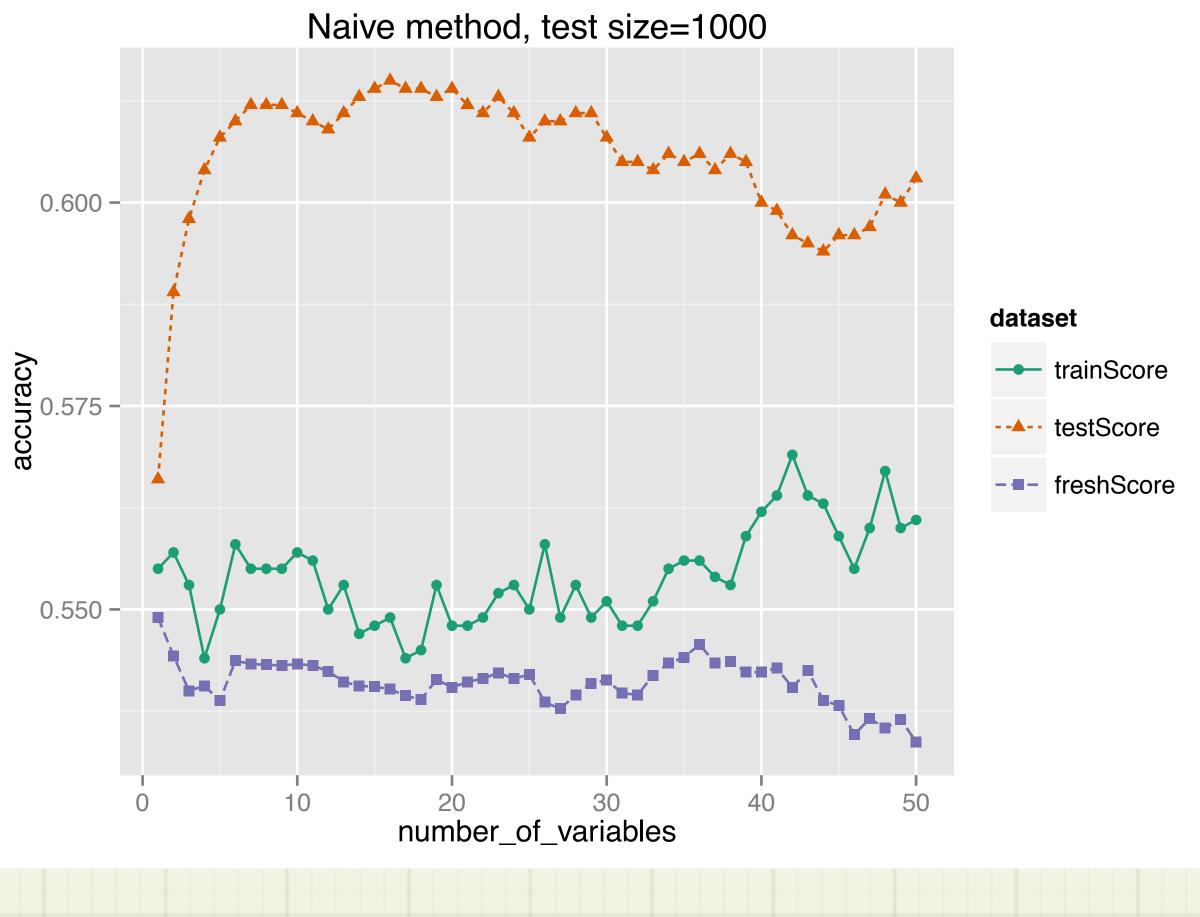


 Test set more up-biased than training!

 Algorithm only picked 1 signal variable (the first)

 Neither test nor training sets estimate true model performance

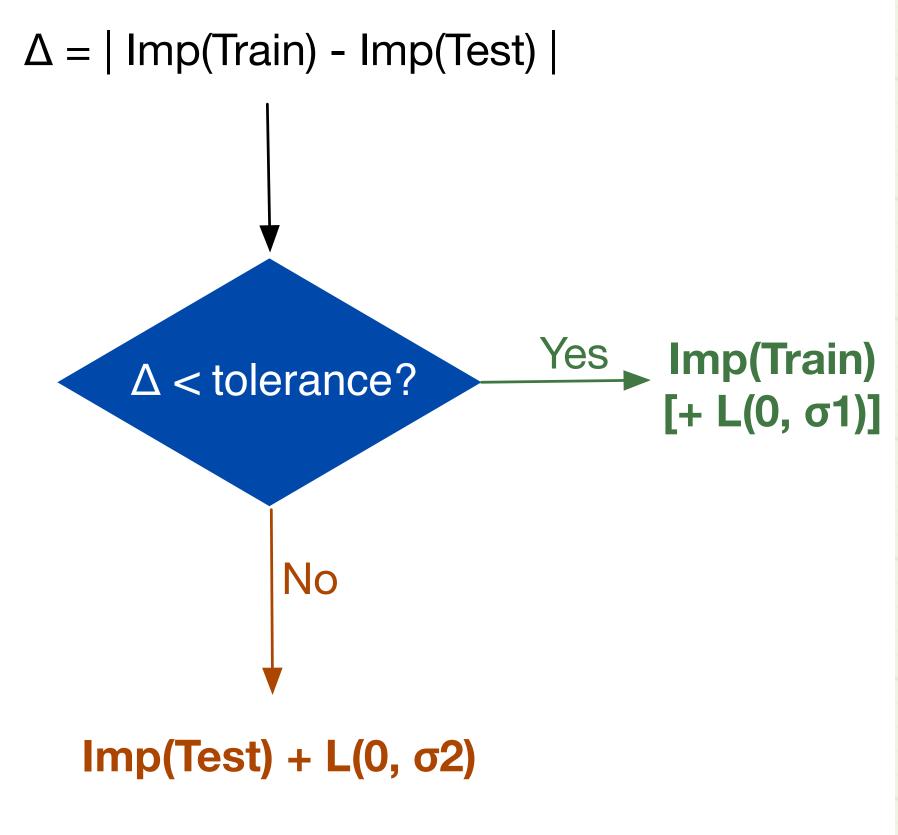
Naive Method

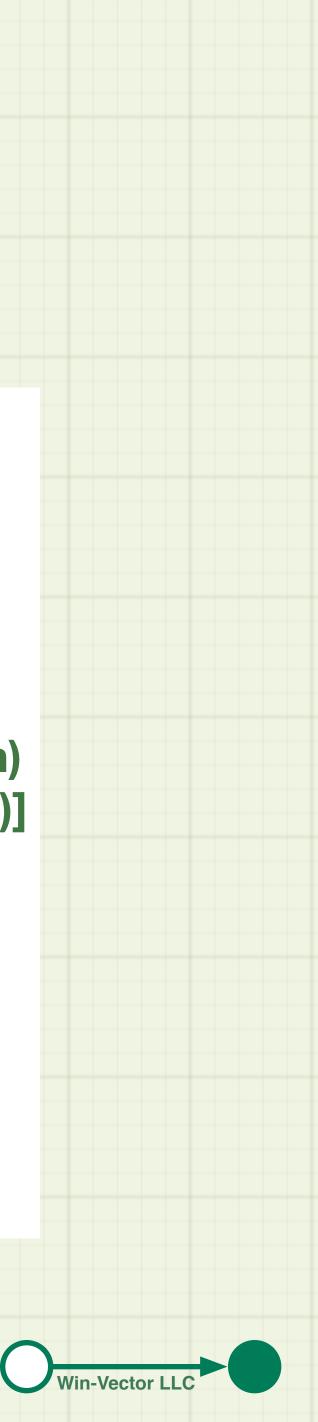


Thresholdout

- Goal Use Test to both:
 - Evaluate models
 - Estimate out-of-sample model performance
- Improvement: Accuracy(k) - Accuracy(k-1)
- Tolerance: $\sigma/2 + L(0, \sigma/2)$
- Never directly inspect Test, so leak information slower

Dwork, Feldman, Hardt, Pitassi, Reingold, Roth, 2015





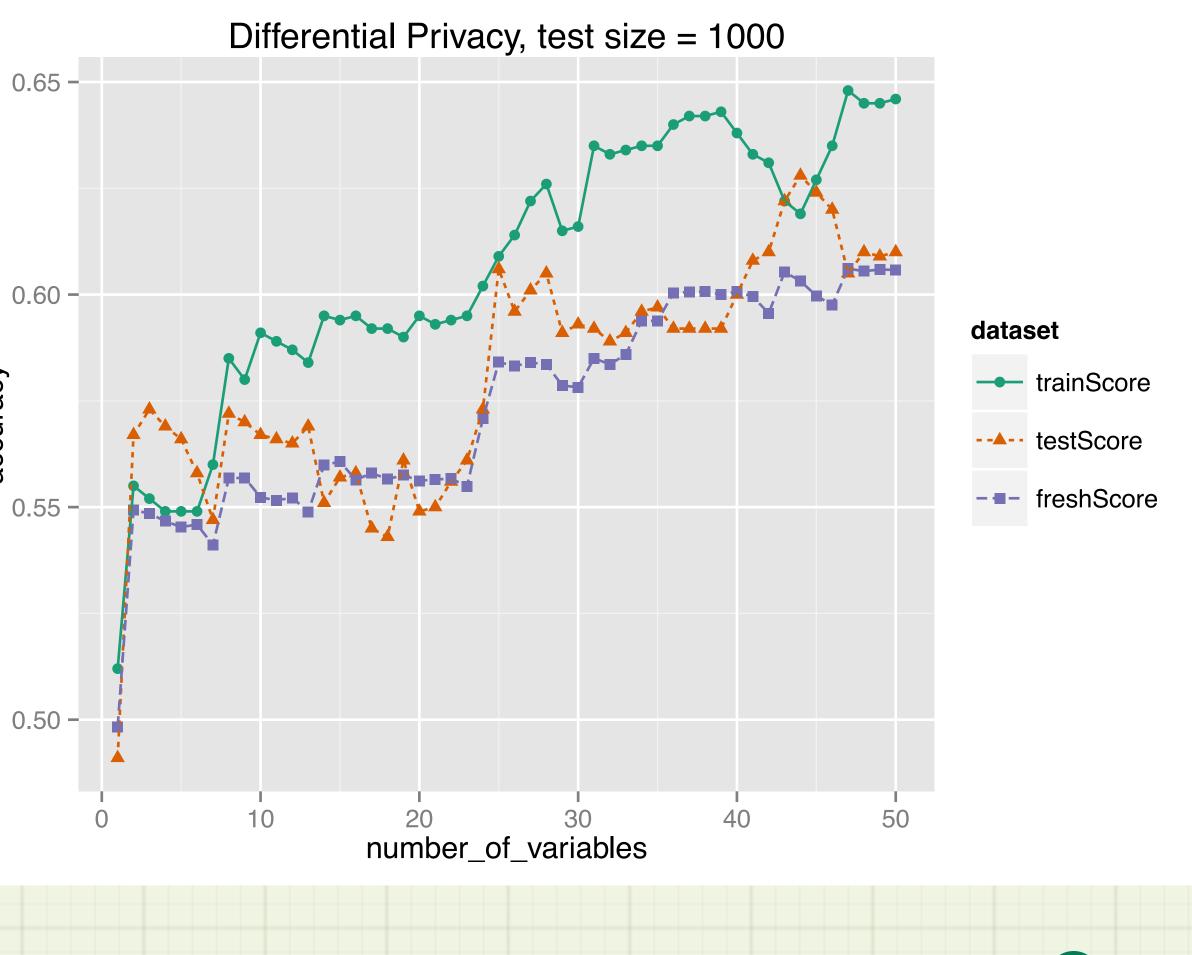
 Test performance tracks Fresh performance

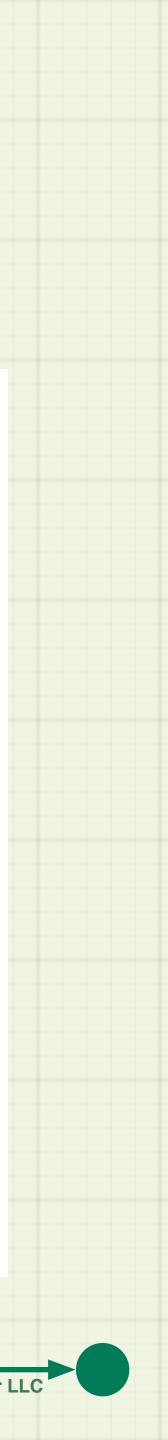
• Found all 10 signal variables

- But started picking noise early
- Last signal variable: #36

Peak accuracy ~61%

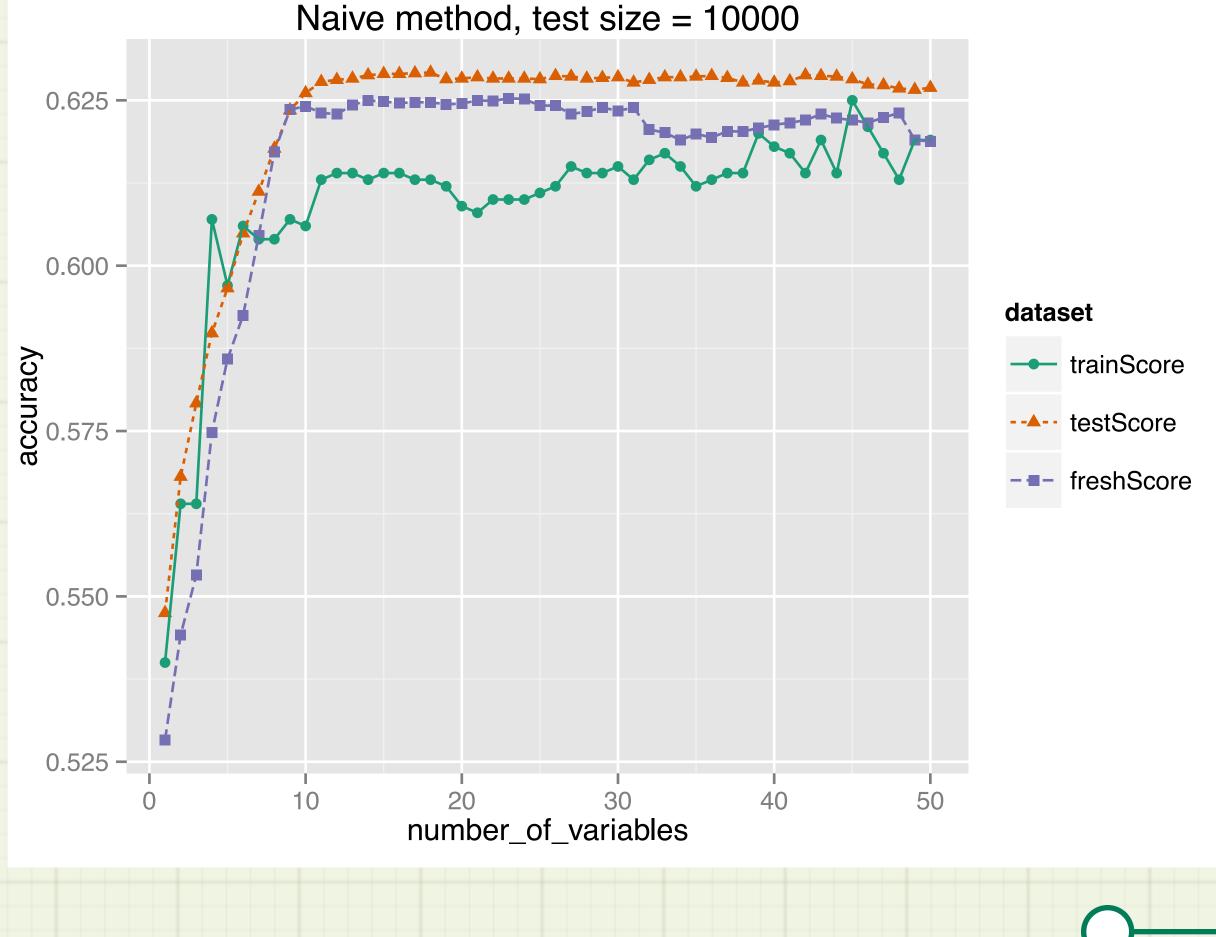
Result

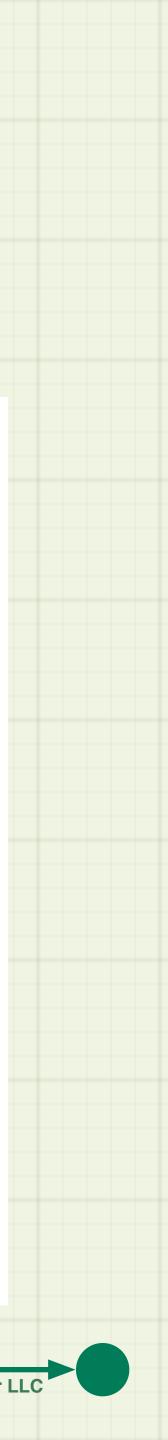




For Comparison: LARGE Test Set

- N=10,000, no DP
- Found 9 signal variables immediately
- Accuracy ~62.5% (9 vars)
- Test set only slightly upwardly biased
 - So large, we don't contaminate it much





Takeaways

not find best possible model

• The two are related, of course

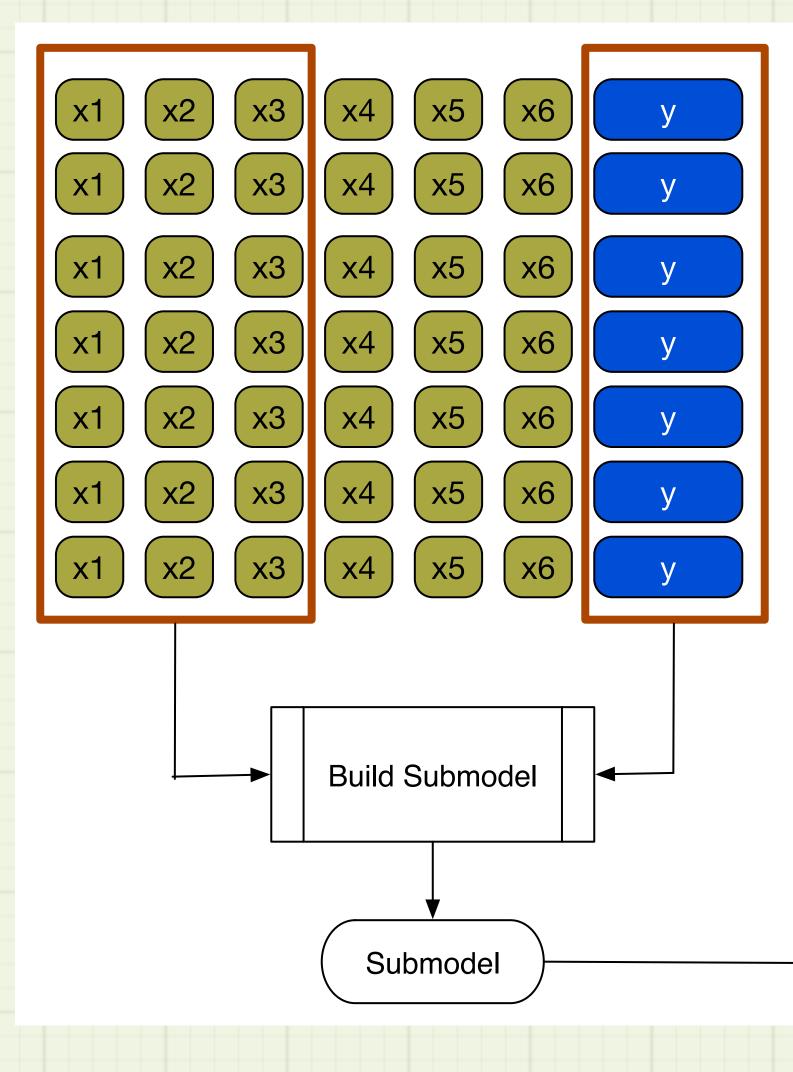
Stepwise Regression is dangerous

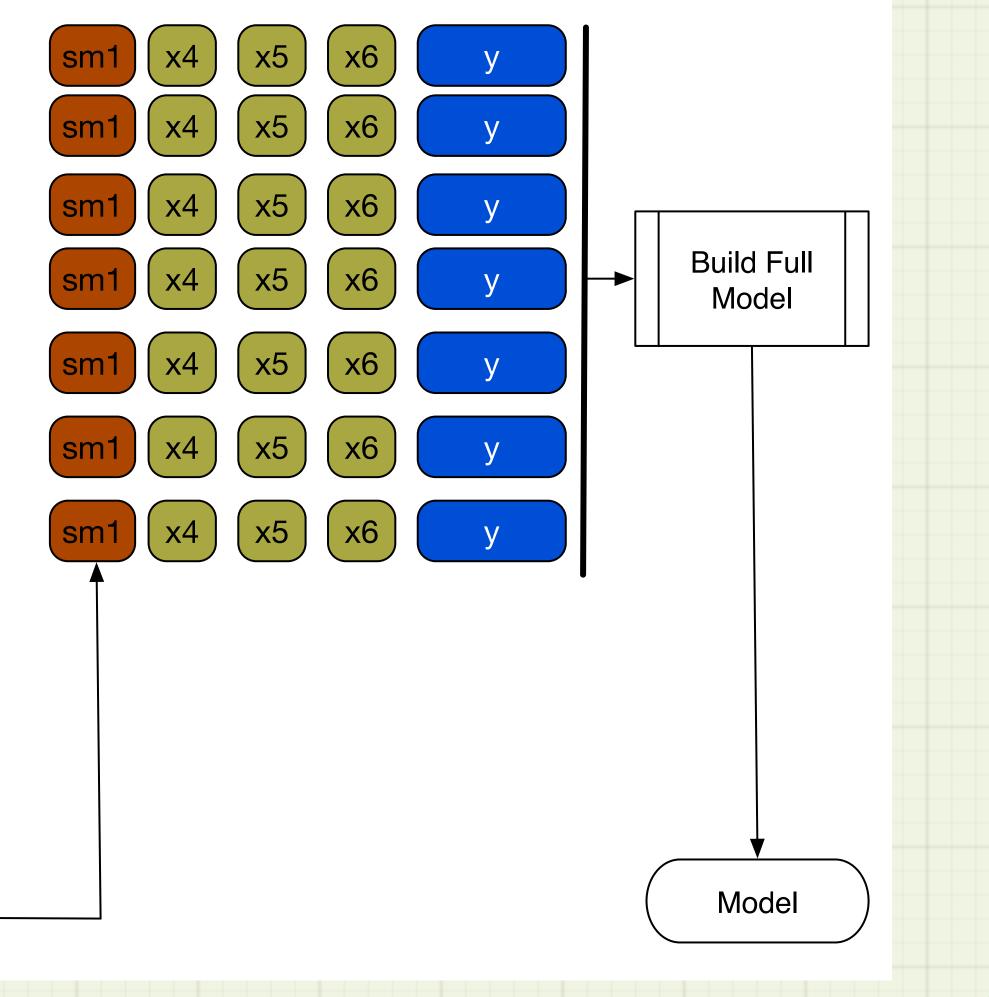
LOTS of queries

Can think of Thresholdout as simulating a larger test set.

DP designed to minimize excess generalization error —

Differential Privacy applied to Nested Models







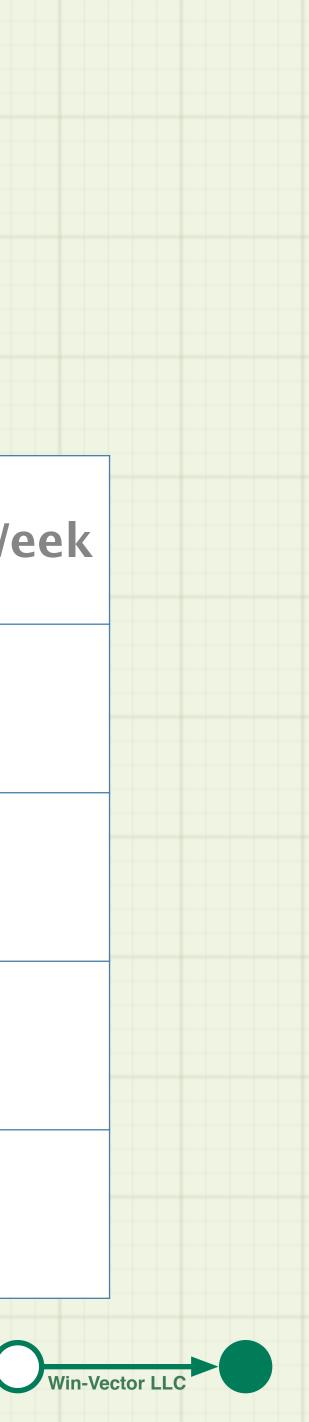
 For categorical variables with many levels.

• K levels = K-1 indicator vars

 Re-encode the categorical variable as a few numerical variables.

Example: Effects Coding

Make_Model	Price	 SoldInWeek	
VW_Golf	\$26,000	 Yes	
Mazda_Miata	\$24,000	 No	
VW_Golf	\$32,000	 Yes	
Toyota_Prius	\$21,500	 No	



Bayesian Model or Model by Counts

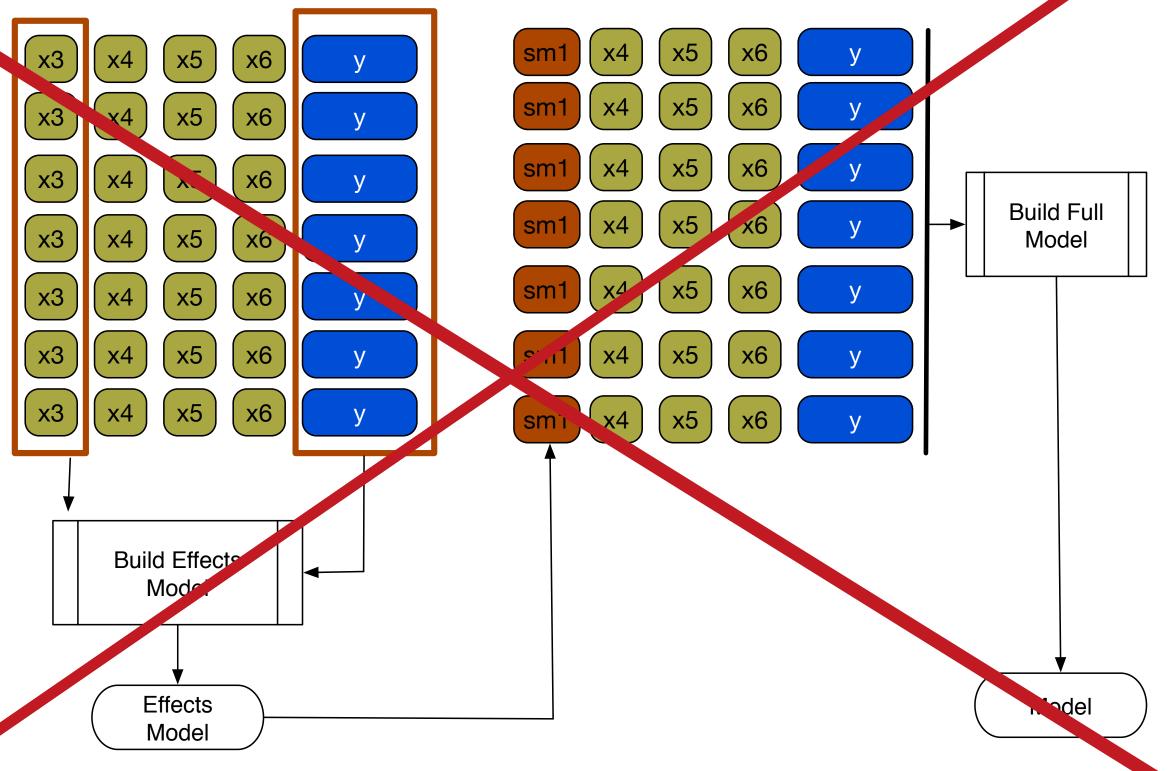
Make_Model	P(SoldIn Week)	Impact	Make_Model	N_SoldIn Week	N_NotSold InWeek	LogDiff	IsRare
VW_Golf	0.6	0.2	VW_Golf	60	40	0.41	No
Mazda_Miata	0.34	-0.06	Mazda_Miata	68	132	-0.66	No
Chevy_Camaro	0.16	-0.24	Chevy_Camaro	8	42	-1.6	No
Toyota_Prius	0.72	0.32					
Lotus_Elise	1.0	0.6	Toyota_Prius	108	42	0.94	No
			Lotus_Elise	1	0	1E+06	Yes
Overall	0.4	0					

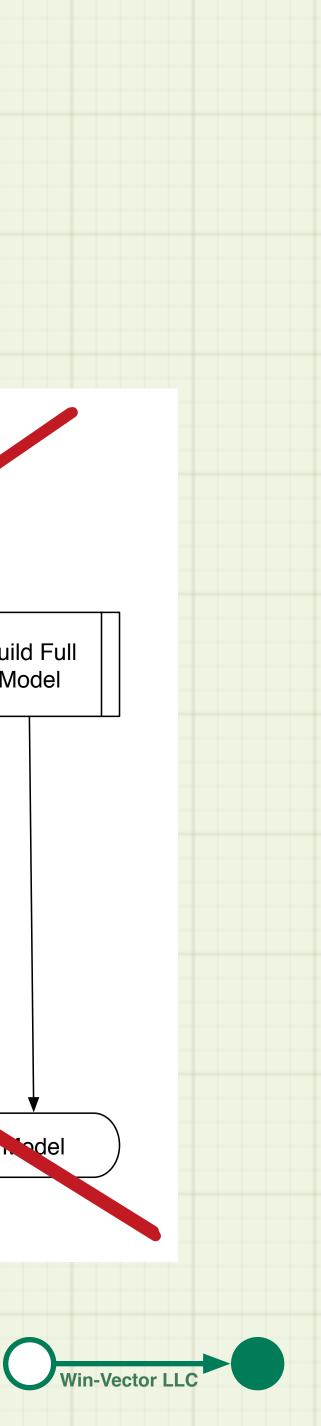
Bayesian

Model by Counts

Can't use Training Data to Effects Code!

- Effects model can memorize the training data
 - "Lotus Elise always sells in a week"
- Full model may overestimate the value of effects-coded variable
 - Overfit

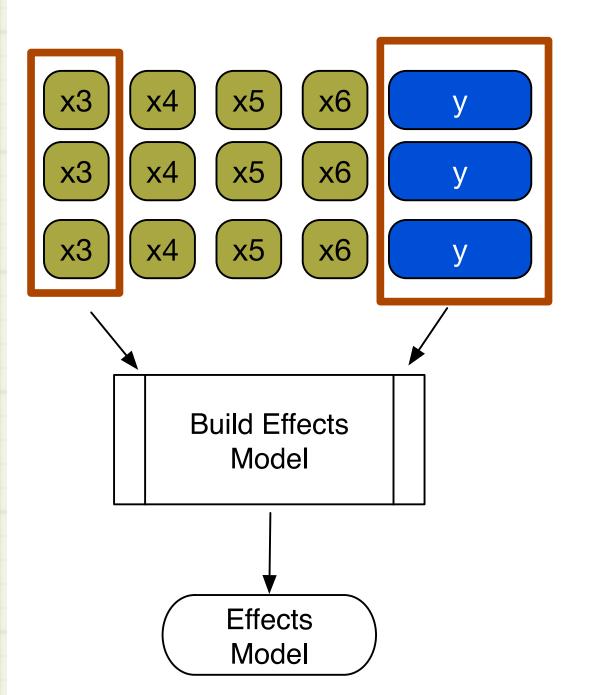


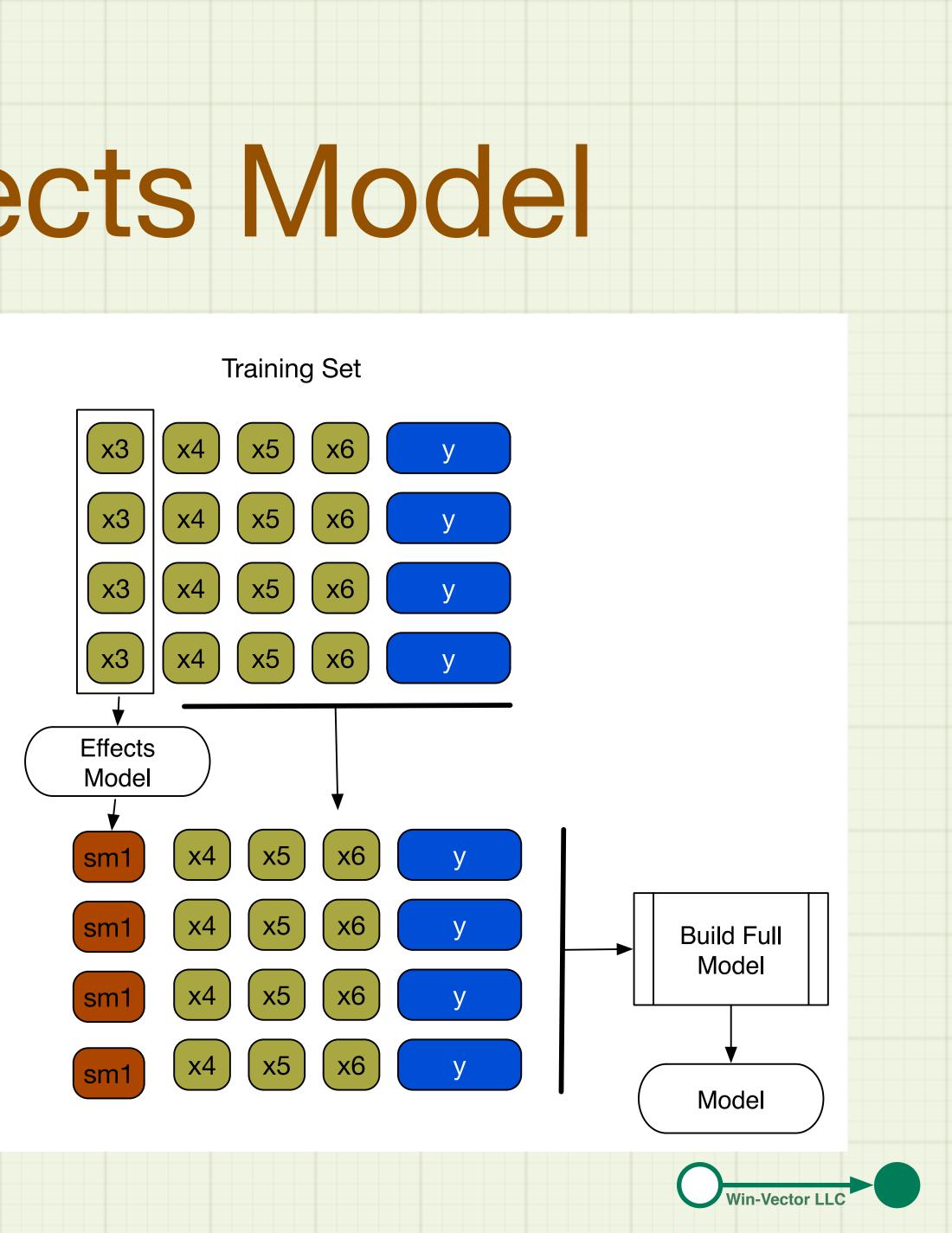


Training the Effects Model

Calibration Set

Best Solution: A separate calibration set for effects model





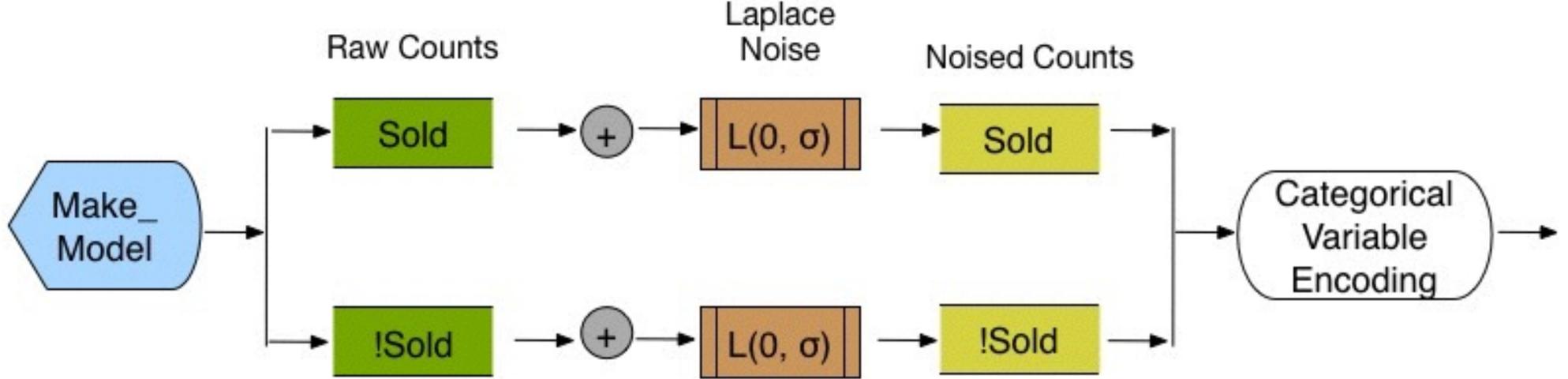
Alternative Solution: Prune Rare Levels

Make_Model	P(SoldIn Week)	Impact	Nobsv
VW_Golf	0.6	0.2	100
Mazda_Miata	0.34	-0.06	200
Chevy_Camaro	0.16	-0.24	50
Toyota_Prius	0.72	0.32	150
Lotus_Elise	1.0	0.6	1
<mark>¥ugo_G</mark> ∀	0.33	- 0.07	3
Overall	0.4	0	Ν

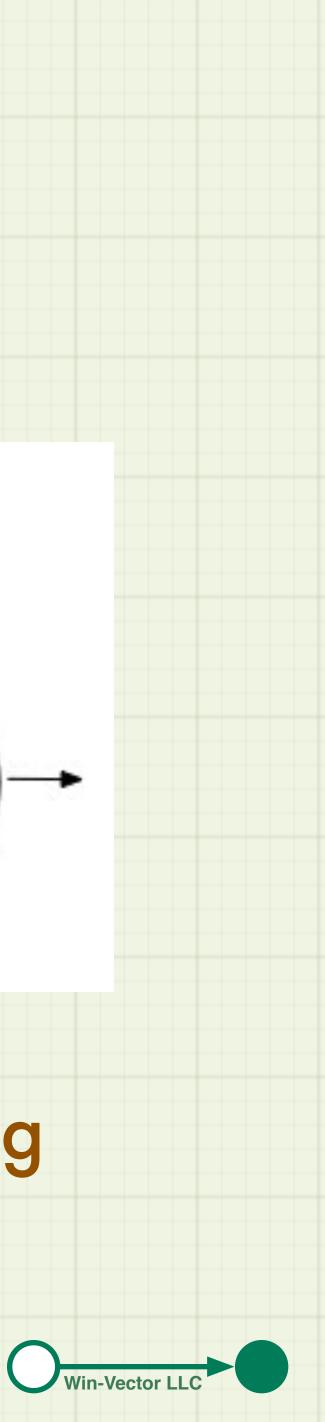
Better: use significance of conditional estimate

Make_Model	Impact		
VW_Golf	0.2		
Mazda_Miata	-0.06		
Chevy_Camaro	-0.24		
Toyota_Prius	0.32		
Lotus_Elise	0		
Yugo_GV	0		

Innovative Solution: **Differential Privacy**



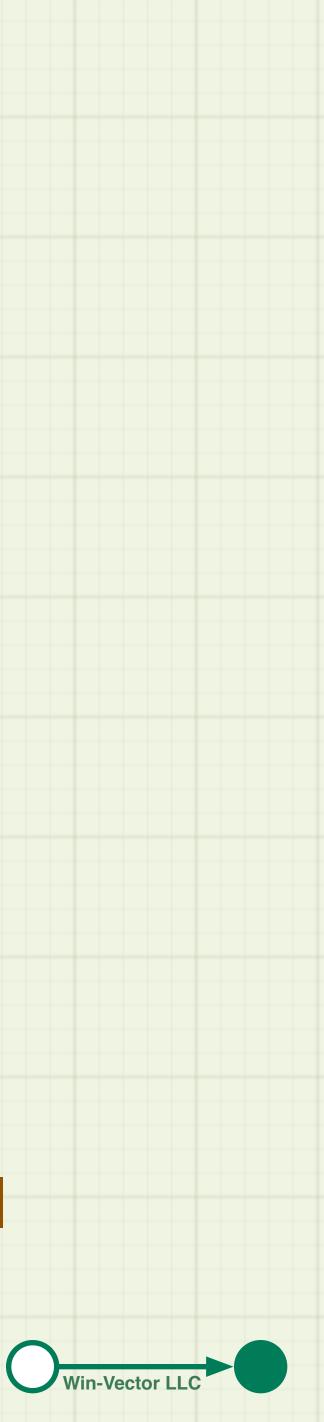
Add noise to training data before passing to effects coding



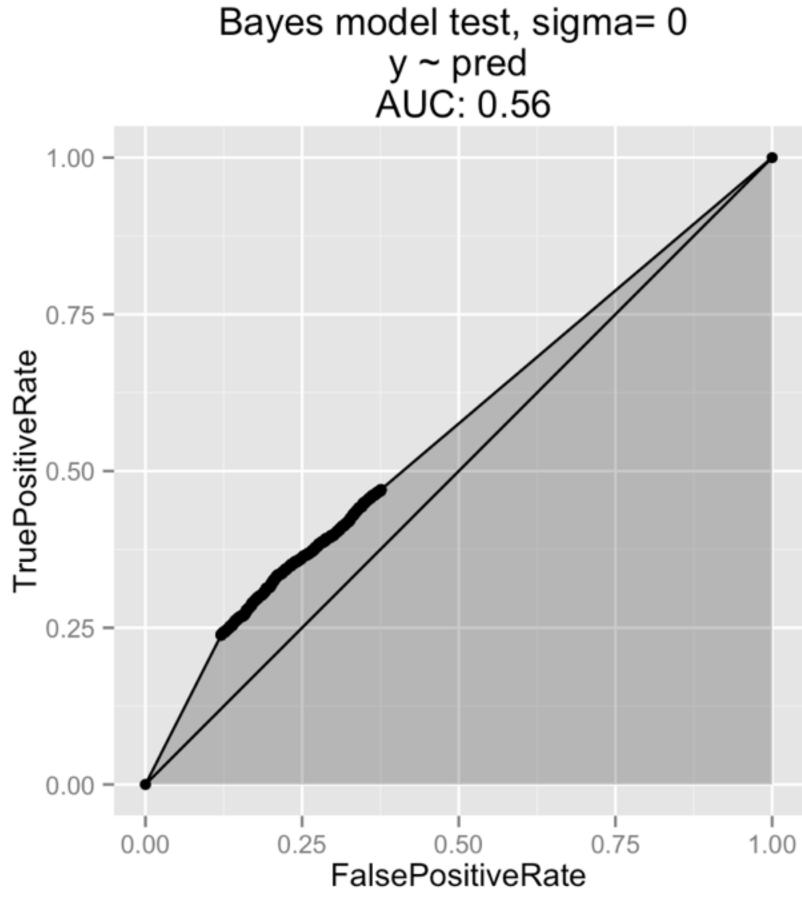
Example

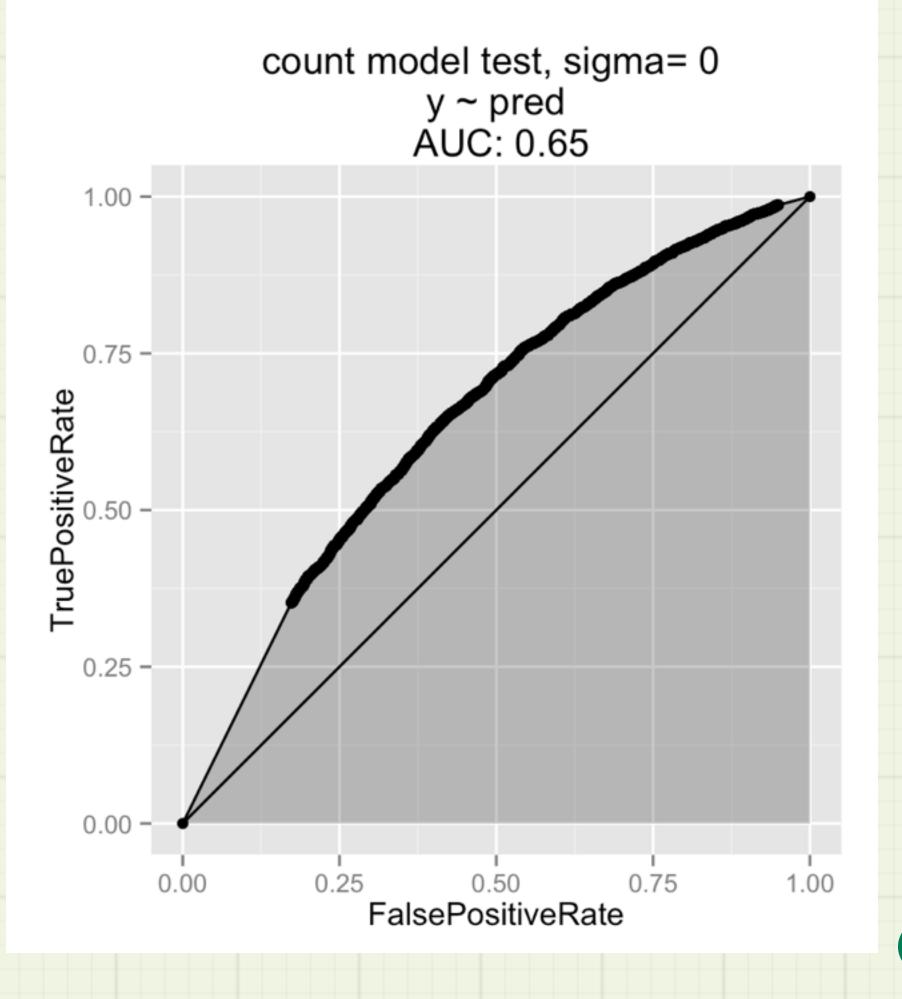
- Synthetic data, 2000 rows training 40 categorical variables 10 signal variables with 10 levels each 30 noise variables with 500 levels each Classification: Positive class 50% prevalence

• Effects code the variables, then fit a logistic regression model

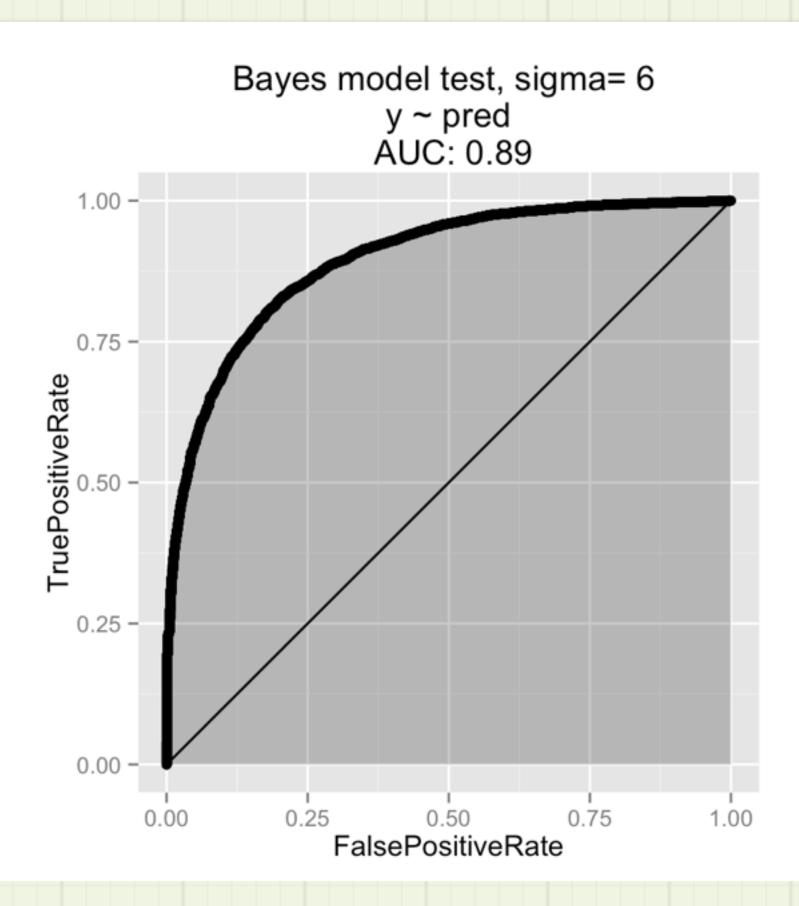


Naive Modeling In Training: both models perfect (AUC = 1)



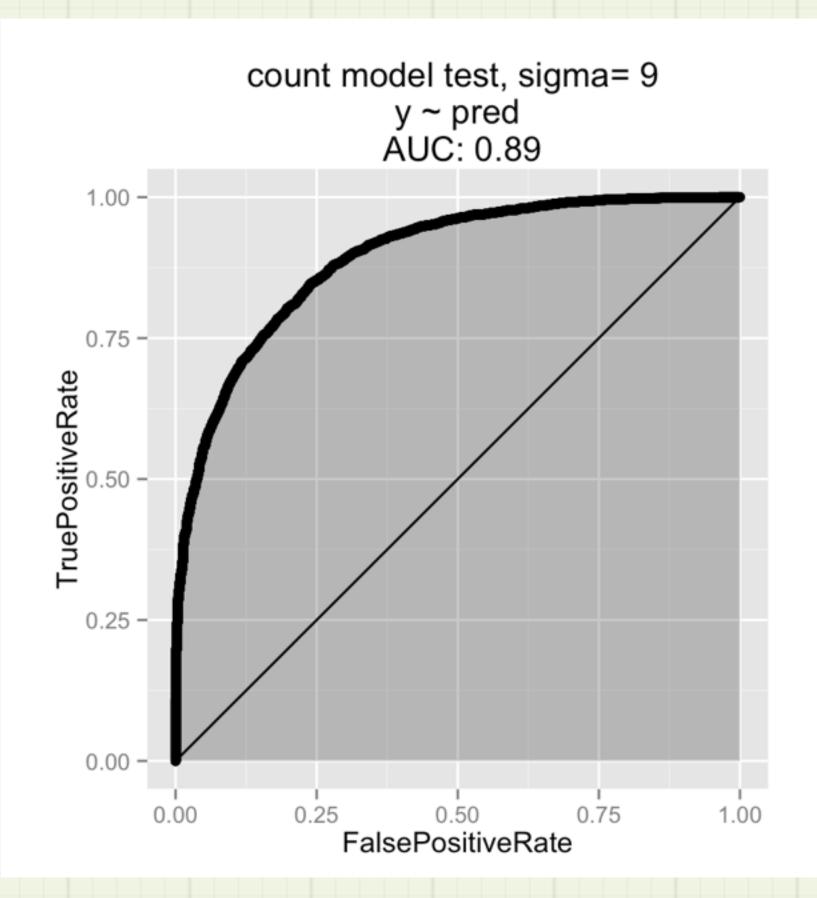




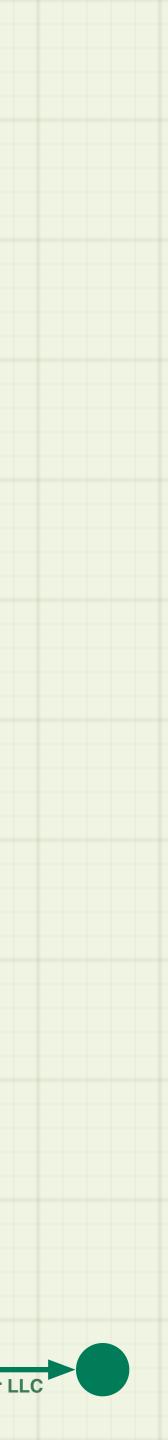


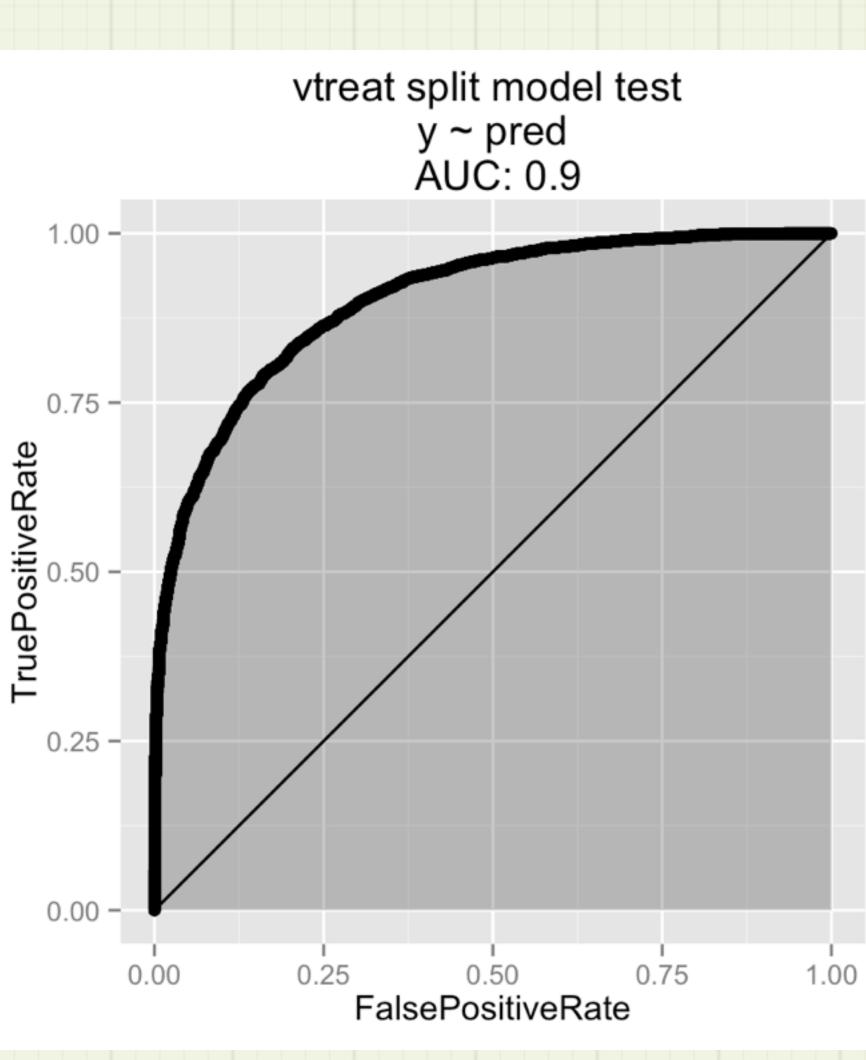
In Training: AUC = 0.95

With Laplace Noise



In Training: AUC = 0.96

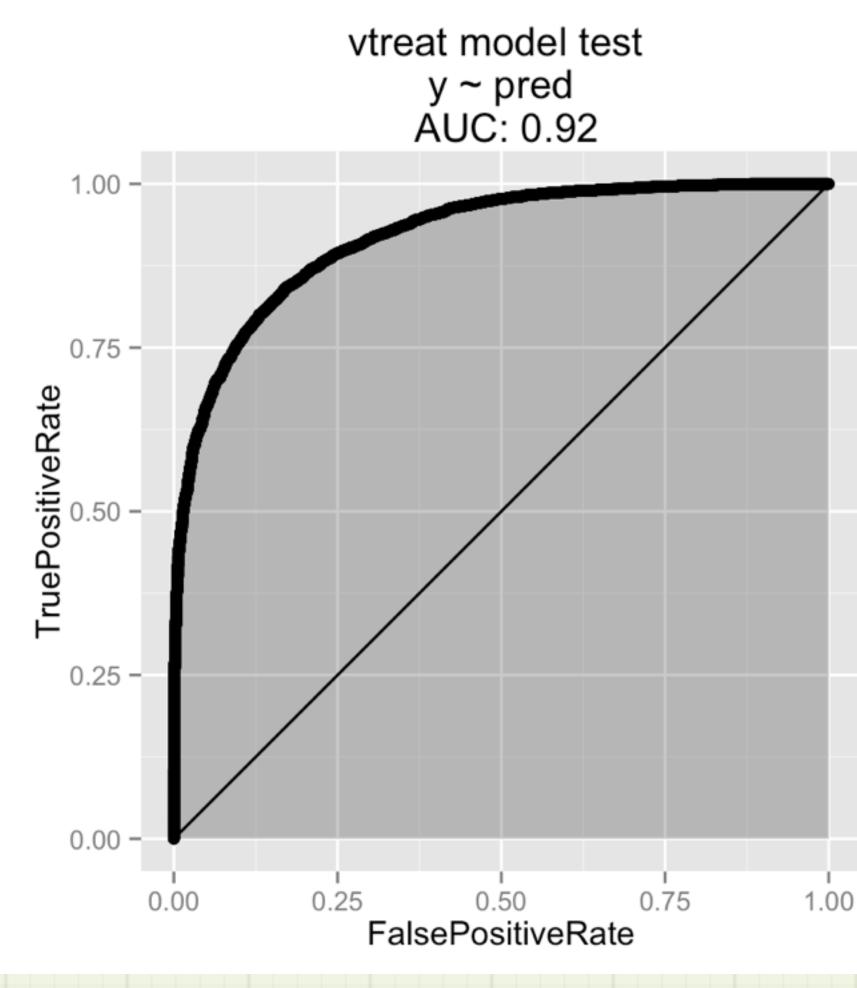




With Calibration Set

Bayesian model: In Training: AUC = 0.91

All training data and rare level



pruning

Bayesian model: In Training: AUC = 0.95

Takeaways

 Differential privacy alleviates the overfit from effects coding (or nested models in general) by masking rare phenomena.

DP is a useful alternative when there's not enough data for a calibration set.
Or for online situations (with learning by counts)
For batch, rare level pruning also works well

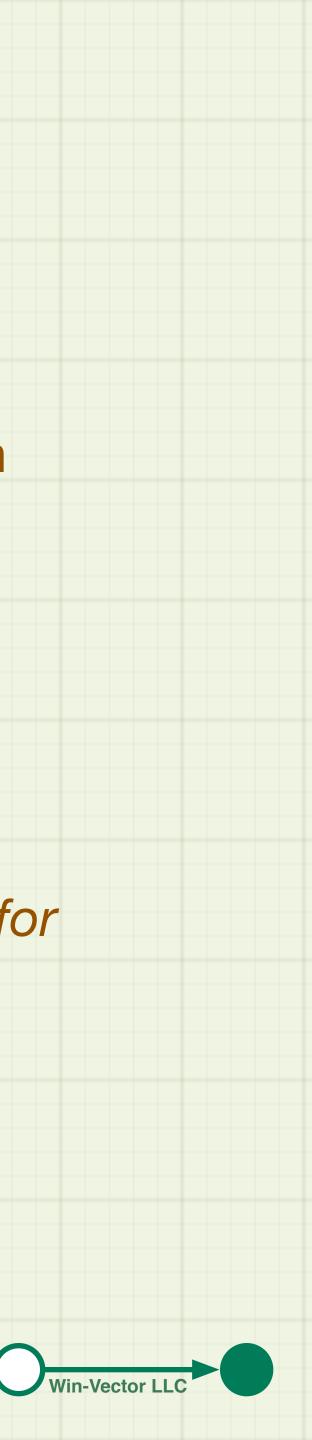
References

 Dwork, Cynthia, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Reingold, Aaron Roth. "Preserving Statistical Validity in Adaptive Data Analysis", April 2015.
 <u>http://arxiv.org/abs/1411.2664</u>

Dwork, Cynthia, *et.al.* "The reusable holdout: Preserving validity in adaptive data analysis", *Science*, vol 349, no 6248 pp 636-638, August 2015.
Abstract: <u>https://www.sciencemag.org/content/349/6248/636.abstract</u>

Cohen, Jacob and Patricia Cohen. *Applied Multiple Regression/Correlation Analysis for the Behavioral Sciences*, 2nd edition, 1983

• Bilenko, Misha. "Big Learning made Easy — with Counts!" *Machine Learning Blog* <u>http://blogs.technet.com/b/machinelearning/archive/2015/02/17/big-learning-made-easy-with-counts.aspx</u>



References

 Blog posts (Differential privacy mini-series): privacy-mini-series/

•Our code, data and examples: <u>https://github.com/WinVector/Examples/tree/master/</u> DiffPriv/PrivStep

 <u>https://github.com/WinVector/PreparingDataWorkshop/</u> tree/master/NestedModels

<u>http://www.win-vector.com/blog/2015/11/our-differential-</u>



