
Preparing data
for analysis using R
Nina Zumel, Win-Vector LLC
March 2016

DATA TREATMENT WHITE PAPER

Win-Vector LLC

PREPARING DATA FOR ANALYSIS USING R 2

Win-Vector LLC

Cleaning and preparing data makes up a substantial portion of the time and effort spent in a data science

project—the majority of the effort, in many cases. It can be tempting to shortcut this process and dive right

into the modeling step without looking very hard at the data set first, especially when you have a lot of

data. Resist the temptation. No data set is perfect; you will be missing data, have misinterpreted data, or

have incorrect data. Some data fields will be dirty and inconsistent. If you don’t take the time to examine

the data before you start to model, you may find yourself redoing your work repeatedly as you discover bad

data fields or variables that need to be transformed before modeling. In the worst case, you’ll build a model

that returns incorrect predictions—and you won’t be sure why. By addressing data issues early, you can save

yourself some unnecessary work, and a lot of headaches!

In this paper, we’ll demonstrate some of the things that can go wrong with data, and explore ways

to address those issues using the R statistical language (https://cran.r-project.org/) before going

on to analysis. For faster numerical libraries, we will use the Microsoft R Open distribution

(https://mran.microsoft.com/open/). Throughout this discussion, we will keep an idealized goal

in mind: using machine learning to build a predictive model.

A taxonomy of pain points
Several issues crop up again and again when preparing data for analysis in R:
n Loading data into R from databases, spreadsheets, or other formats
n Shaping data into a form appropriate for analysis
n Checking variable types: Are the variables of the type that you expect?
n Managing bad values: What do you do with NaNs or values that are out of range or invalid?

How do you find and deal with sentinel values?
n Dealing with missing values (NA)
n Anticipating future novel categorical values (values that were not present in training data)
n Re-encoding categorical values with too many levels: How do you use such variables in an

analysis efficiently?

Some of these problems must be dealt with in a domain-specific or problem-specific way. Other issues
are more general and are good candidates for automated data treatment. We will touch on the first two
issues briefly, and the remaining issues in more depth.

INTRODUCTION

PREPARING DATA FOR ANALYSIS USING R 3

Win-Vector LLC

Loading data
There are a variety of functions and packages for loading data into R. Here, we touch on a few of our
preferred functions and packages for loading data from the most common data sources.

Data source Package Function Comments

Fixed-field text file (no
delimiters) utils read.fwf()

Assumes fields are in
fixed position on each
line.

Delimited text file
(comma-separated,
tab-separated, etc.)

utils read.table() reads data file
into a data frame

Assumes data is in a
regular, tabular format
(no ragged rows).

Database RJDBC

dbConnect() to establish
connection

dbReadTable() to read entire
table into data frame

dbGetQuery() to access data
via SQL

Requires Java VM and
JDBC driver. Supplies
a good, concrete
interface to many
databases.

Excel spreadsheets gdata read.xls()

Requires perl. There
are other packages,
but gdata is the
most reliable in our
experience.

XML or JSON XML or rjson
Fairly complicated;
see package reference
manuals.

PREPARING DATA FOR ANALYSIS USING R 4

Win-Vector LLC

Shaping data
The “shape” that is most efficient for recording or storing data information is not always the best shape for
analyzing the data. For example, log data generally comes in a long and skinny format where information
about a single entity (for example, a single customer or a single machine) is scattered across many rows.

For analysis, we generally prefer data in a wide format, where all facts about a single entity are stored in a
single row.

This wide format is so central to R that R calls rows observations and columns variables.

R provides several functions for converting data from skinny to wide formats, and vice versa. For beginners,
we recommend the reshape2 package. To convert from skinny to wide data, use dcast(). To convert in
the opposite direction, use melt(). More advanced users may wish to move on to the dplyr and tidyr
ecosystems, though this involves learning additional notation.

Data munging and aggregation is a topic in itself (see http://blog.revolutionanalytics.com/2014/01/
fast-and-easy-data-munging-with-dplyr.html for an introductory discussion). In this article, we will
concentrate on data cleaning.

PREPARING DATA FOR ANALYSIS USING R 5

Win-Vector LLC

Variable types
Once you have your data loaded into R, it’s time to check that all of it is as you expect. One of the advantages of
data analysis in R is that R gives you many tools to explore and examine your data, and to fix the problems that
you find. Checking that each variable is the type you expect seems trivial, but incorrect data types can mask
some insidious data issues. For example, suppose we run summary() on our data and get this:1

1This example data set is derived from the AdultUCI data set in the package arules, with some modifications to demonstrate various issues.

Categorical variables masquerading as numbers
One of the first things we notice is that marital.status is a numeric value, which doesn’t make sense. This can
be an issue for some machine learning algorithms (like regression), which will try to treat this variable as if it is
a continuous numerical value. This can lead to incorrect inferences.

Fortunately, R, unlike most programming languages, has a concept for representing categorical variables: the
factor class. The most straightforward solution is simply to convert the numeric column to a factor column.

PREPARING DATA FOR ANALYSIS USING R 6

Win-Vector LLC

If you have access to the data dictionary, you can convert the numeric codes to more meaningful strings—
another advantage R has over other programming languages that are used for analysis.

The above code takes advantage of the fact that in R elements of a vector can be accessed by name as
well as by position. We can use this ability to build a named vector that maps the numeric codes (or more
exactly, the string representation of them) to more meaningful names for the category levels. In R this
remapping fixed many rows all at once; a simple for-loop over column names can repair many columns.

PREPARING DATA FOR ANALYSIS USING R 7

Win-Vector LLC

Strings or factors where you expect numbers
Now let’s look at the variables capital.gain and capital.loss. We would expect that capital.gain and
capital.loss should both be numeric monetary values. However, we can see that capital.loss is not a numeric
variable; it is a factor (it may also be a string, if the data were read into R using read.table() with the parameter
stringsAsFactors=FALSE). Most likely, nonnumeric characters caused R to read in this column as character
valued (strings) rather than as numbers. We can check this.

In this case, we see that commas in a few of the entries are causing the problem. String substitution to
remove the commas and then as.numeric to convert the column will fix this.

An especially subtle issue is when the corrupted variable is a numeric identifier column (like customer id or social
security number). You may have several tables, all of which are indexed by this identifier column, and you might
want to merge data from these disparate tables into a single table using (for example) customer_id as the merge
key. If the customer_id column has been corrupted in one of the tables, and was read in as a string or factor
variable rather than as a numeric variable, your merge will fail, possibly without you noticing.

PREPARING DATA FOR ANALYSIS USING R 8

Win-Vector LLC

Check for bad or missing values
Bad values can be missing (NA) or problematic types (NaN, Inf). They can also be invalid values: invalid
category levels, implausible numeric values (negative ages; values that are outside the range a variable
would be expected to take). Identifying bad values often requires domain knowledge of the plausible
values of the variables.

A special kind of bad numerical value is the sentinel value: a value that used to represent “unknown” or “not
applicable” or other special cases in numeric data. A -1 in age data can be a sentinel value, meaning “age
unknown.” All 9s is also a common sentinel value. Sometimes, the maximum value of a variable may really
be the maximum recorded value; any value greater than that maximum was censored down.

Detecting sentinel values
One way to detect sentinel values is to look for sudden jumps in an otherwise smooth distribution of
values. In the adultf data, the 99999 value for capital.gain looks suspiciously like a sentinel. We can check
for that by graphing the distribution of the capital.gain variable.

PREPARING DATA FOR ANALYSIS USING R 9

Win-Vector LLC

The sudden uptick in the distribution at 99999 is good evidence that it is a sentinel value for NA or “unknown.”
We can see similar suspicious spikes at the 99 of the hours.per.week variable and the 90 of the age variable.
These “sneaky sentinel values” arise because many systems lack a uniform notation for “no value.”

PREPARING DATA FOR ANALYSIS USING R 10

Win-Vector LLC

The slight uptick in each distribution is mild evidence that age was capped at 90 (so 90 really means “90 or
older”) and hours.per.week was capped at 99 (so 99 really means “99 hours or more”). In these two cases,
the uptick is not that dramatic, and the number of problematic cases is small, so it may be safe to treat the
data as given. However, in the capital.gain case, the sentinel value is dramatically out of range with the rest
of the data. To deal with it, we will first convert the sentinel values to NA, so that we don’t mistake them for
actual capital gains.

For more on graphing, exploring, and repairing data see Chapters 3 and 4 of Practical Data Science with R
(Zumel and Mount, Manning 2014).

Dealing with missing values (NA)
To drop or not to drop?
If the number of missing values is small, it may be safe to simply drop those rows. However, take care: a
few missing values in this variable and a few missing values in that variable can quickly add up to a lot of
incomplete data. The function complete.cases() on a data frame returns TRUE for every row where there
are no NAs, FALSE otherwise.

In this case, dropping all the rows with missing values eliminates almost 40 percent of the data. This can
lead to incorrect models, especially when there are additional distributional differences between the
dropped and retained data. Also, production models usually need to score all observations, even when
those observations have missing values.

PREPARING DATA FOR ANALYSIS USING R 11

Win-Vector LLC

Categorical variables
NAs in categorical variables can be treated as an additional category level.

Numerical variables
Treating NAs in numerical variables depends on why the data is missing.

When values are missing randomly

Let’s consider the capital.gains variable, which now has several missing values. You might believe that
the data is missing because of a “faulty sensor”—in other words, the data collection failed at random
(independently of the value sensored, and all other variables or outcomes). In this case, you can replace
the missing values with stand-ins, such as inferred values, distributions of values, or the expected or mean
value of the nonmissing data. Assuming that the customers with missing capital gains are distributed
the same way as the others, this estimate will be correct on average, and you’ll be about as likely to have
overestimated capital gains as underestimated it. It’s also an easy fix to implement.

This estimate can be improved when you believe that capital gains is related to other variables in your
data—for instance, income or occupation. If you have this information, you can use it. Note that the
method of imputing a missing value of an input variable based on the other input variables can be applied
to categorical data as well. The text R in Action, Second Edition (Robert Kabacoff, Manning 2015) includes an
extensive discussion of several methods for imputing missing values that are available in R.

PREPARING DATA FOR ANALYSIS USING R 12

Win-Vector LLC

When values are missing systematically

It’s important to remember that replacing missing values by the mean, as well as many more sophisticated
methods for imputing missing values, assumes that the rows with missing data are in some sense random
(the “faulty sensor” situation). It’s possible that the rows with missing data are systematically different
from the others. For example, if we were looking at data about cars, then cars with missing fuel efficiency
(miles per gallon) data might be electric cars, for which the concept of “miles per gallon” is meaningless.
In that case, “filling in” the missing values using one of the preceeding methods is the wrong thing to do.
You don’t want to throw out the data either. In this situation, a good solution is to fill in the missing values
with a nominal value, either the mean value of the nonmissing data or zero, and additionally to add a new
variable that tracks which data have been altered:

If you don’t know for sure whether missing values in your data are missing randomly or systematically, it is
safer and more conservative to assume that they are missing systematically. For business data, this is the
more likely scenario. And often (because missingness is often an indication of data provenance) the isbad
column can be a highly informative variable—sometimes more informative than the actual values that the
variable takes on.

PREPARING DATA FOR ANALYSIS USING R 13

Win-Vector LLC

Categorical variables with too many levels or with rare levels
Another type of problematic variable is the categorical variable with many possible values (or levels, in R
parlance): zip codes and business codes like NAICS codes fall into this category. Computationally speaking,
a categorical variable with k levels is treated by most machine learning algorithms as the equivalent of
about k numerical (0/1) variables. There are roughly 40,000 zip codes in the United States—far too many
variables for most machine learning algorithms to handle well.

In addition, if a categorical variable can take on many levels relative to the size of the data, then most of
those levels will be rare, and hence more difficult to learn. It is also more likely that many allowable levels
won’t even show up in the training data, which in turn causes problems if these unseen levels appear when
you are applying your model to new data. Of course, this novel level problem is potentially a problem even
with categorical levels with fewer levels, if some of those levels are rare.

Dealing with novel levels
Most of R’s machine learning algorithm implentations will crash when they try to apply a model to data
that contains a level they don’t recognize (that is, a level that didn’t appear in the training data). To avoid
this, you can preprocess your data before presenting it to your model to detect these novel levels and
convert them to something that the model can deal with. For example, if before training you pooled all
rare levels in the training data (into a single level called rare for example), then you can also map novel
levels in new data to rare before applying the model.

Dealing with too many levels
If your data has a variable like zip code that has too many levels for a machine learning algorithm to deal
with, you can try converting that variable to a numerical variable (or to a categorical variable with fewer
categories) in one of two possible ways:

Look-up codes
Often a variable like zip code or NAICS code is really a proxy for demographic or other information, and
it’s this other information that’s really of interest. For example, if you are trying to build a model to predict
someone’s income or their net worth, then the average or median income of people in a certain zip code is
useful information. If you have access to external information about average income by zip code, then you
can use the zip codes in your data to look up those average incomes, and use that data in your model.

One-variable models (impact coding)
Alternately, you can convert the problematic variable into a single-variable submodel for the desired income;
essentially, a lookup table or a conditional probability model based on the training data. For example, if you
are interested in predicting income, then you can build a submodel of income by zip code by finding the
average income per zip code in a random subset of your training data. If you are building a classifier (perhaps
building a model to predict “high income,” for some definition of “high”), then you can use part of the training
data to build a submodel that predicts the conditional probability of high income, conditioned on zip code.

Once you have a submodel, then you can use the predictions of that submodel as a variable in your
overall model in place of the original problematic variable. This technique is called effects modeling in
some disciplines, and we refer to it as impact modeling in this blog post: http://www.win-vector.com/
blog/2012/07/modeling-trick-impact-coding-of-categorical-variables-with-many-levels/
which discusses the technique in more detail.

PREPARING DATA FOR ANALYSIS USING R 14

Win-Vector LLC

Here we show a simple example of impact modeling where the outcome to be predicted is income class
(large or small), and the variable to be impact-coded is education level.

Impact coding in the vtreat package
Impact coding is implemented in the R package vtreat, and here we show a small example of its use.

PREPARING DATA FOR ANALYSIS USING R 15

Win-Vector LLC

The vtreat impact model also handles novel levels and missing data. In fact, vtreat creates general treatment
plans that can also manage missing data for categorical variables in general (that is, without creating impact
models), and handles bad and missing values in numerical data as well. However, a general discussion of
vtreat is outside the scope of this paper.

Note that we used different data sets to create the treatment plan/impact model (the cal data set) and to
train the overall income model (the train data set). This is recommended practice, because using the same
data to create the impact model and the larger overall model can lead to undesirable bias in model training.

The function designTreatmentsC() creates what we call a treatment plan: a record of all the summary
statistics needed to create and apply the single-variable impact model for predicting a categorical
outcome. We apply the treatment plan to the training data to get back the predictions of the impact
model (in train.treat$education_catB). The impact model in vtreat returns the log ratio of the conditional
probability of high income given education level to the overall probability of high income. In other words,
it encodes whether or not a given education level has a positive or negative impact on the probability of
high income, compared to the average.

The predictions from the impact model can then be used in a model for income, along with any other
variables like age or occupation.

In order to apply the resulting model to new data (in this case, the data set test), we again apply the
treatment plan to test to get the predictions of the impact model on test$education. These predictions, in
test.treat$education_catB, can then be fed to the overall income model.

PREPARING DATA FOR ANALYSIS USING R 16

Win-Vector LLC

In this paper, we’ve looked at a number of common pain points that arise when preparing your data for

analysis. We’ve shown how to detect or anticipate these issues, and how to address them using R. Some of

these tasks can be readily automated, but some will be more domain specific and must be handled on a

case-by-case basis.

This work is licensed under the Creative Commons Attribution-ShareAlike 4.0 International License. To view a copy of this license, visit
http://creativecommons.org/licenses/by-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.

CONCLUSION

