‘vtreat’ is a data.frame processor/conditioner that prepares real-world data for predictive modeling in a statistically sound manner. A formal article on the method can be found here: arXiv:1611.09477 stat.AP.
A ‘vtreat’ clean data frame:
To achieve this a number of techniques are used. Principally:
For more details see: the ‘vtreat’ article and update.
The use pattern is:
designTreatmentsC()
or designTreatmentsN()
to design a treatment planprepare()
to apply the plan to data frames.The main feature of ‘vtreat’ is that all data preparation is “y-aware”: it uses the relations of effective variables to the dependent or outcome variable to encode the effective variables.
The structure returned from designTreatmentsN()
or designTreatmentsC()
includes a list of “treatments”: objects that encapsulate the transformation process from the original variables to the new “clean” variables.
In addition to the treatment objects designTreatmentsC()
and designTreatmentsN()
also return a data frame named scoreFrame
which contains columns:
varName
: name of new variableorigName
: name of original variable that the variable was derived from (can repeat).code
: what time of treatment was performed to create the derived variable (useful for filtering).varMoves
: logical TRUE if the variable varied during training; only variables that move will be in the treated frame.sig
: linear significnace of regerssing derived variable against a 0/1 indicator target for numeric targets, logistic regression significance otherwise.needsSplit
: is the variable a sub model and require out of sample scoring.In all cases we have two undesirable upward biases on the scores:
‘vtreat’ uses a number of cross-training and jackknife style procedures to try to mitigate these effects. The suggested best practice (if you have enough data) is to split your data randomly into at least the following disjoint data sets:
designTreatmentsC()
or designTreatmentsN()
step and not used again for training or test.prepare()
) for training your model.prepare()
) for estimating your model’s out of training performance.Taking the extra step to perform the designTreatmentsC()
or designTreatmentsN()
on data disjoint from training makes the training data more exchangeable with test and avoids the issue that ‘vtreat’ may be hiding a large number of degrees of freedom in variables it derives from large categoricals.
Some trivial execution examples (not demonstrating any cal/train/test split) are given below. Variables that do not move during hold-out testing are considered “not to move.”
library(vtreat)
dTrainC <- data.frame(x=c('a','a','a','b','b',NA),
z=c(1,2,3,4,NA,6),y=c(FALSE,FALSE,TRUE,FALSE,TRUE,TRUE))
head(dTrainC)
## x z y
## 1 a 1 FALSE
## 2 a 2 FALSE
## 3 a 3 TRUE
## 4 b 4 FALSE
## 5 b NA TRUE
## 6 <NA> 6 TRUE
dTestC <- data.frame(x=c('a','b','c',NA),z=c(10,20,30,NA))
head(dTestC)
## x z
## 1 a 10
## 2 b 20
## 3 c 30
## 4 <NA> NA
treatmentsC <- designTreatmentsC(dTrainC,colnames(dTrainC),'y',TRUE)
## [1] "desigining treatments Thu Apr 13 17:40:59 2017"
## [1] "designing treatments Thu Apr 13 17:40:59 2017"
## [1] " have level statistics Thu Apr 13 17:40:59 2017"
## [1] "design var x Thu Apr 13 17:40:59 2017"
## [1] "design var z Thu Apr 13 17:40:59 2017"
## [1] " scoring treatments Thu Apr 13 17:40:59 2017"
## [1] "have treatment plan Thu Apr 13 17:40:59 2017"
## [1] "rescoring complex variables Thu Apr 13 17:40:59 2017"
## [1] "done rescoring complex variables Thu Apr 13 17:41:00 2017"
print(treatmentsC)
## $treatments
## $treatments[[1]]
## [1] "vtreat 'Categoric Indicators'('x'(integer,factor)->character->'x_lev_NA','x_lev_x.a','x_lev_x.b')"
##
## $treatments[[2]]
## [1] "vtreat 'Prevalence Code'('x'(integer,factor)->character->'x_catP')"
##
## $treatments[[3]]
## [1] "vtreat 'Bayesian Impact Code'('x'(integer,factor)->character->'x_catB')"
##
## $treatments[[4]]
## [1] "vtreat 'Scalable pass through'('z'(double,numeric)->numeric->'z_clean')"
##
## $treatments[[5]]
## [1] "vtreat 'is.bad'('z'(double,numeric)->numeric->'z_isBAD')"
##
##
## $scoreFrame
## varName varMoves rsq sig needsSplit extraModelDegrees
## 1 x_lev_NA TRUE 0.19087450 0.20766228 FALSE 0
## 2 x_lev_x.a TRUE 0.08170417 0.40972582 FALSE 0
## 3 x_lev_x.b TRUE 0.00000000 1.00000000 FALSE 0
## 4 x_catP TRUE 0.15582050 0.25493078 TRUE 2
## 5 x_catB TRUE 0.49618022 0.04220134 TRUE 2
## 6 z_clean TRUE 0.25792985 0.14299775 FALSE 0
## 7 z_isBAD TRUE 0.19087450 0.20766228 FALSE 0
## origName code
## 1 x lev
## 2 x lev
## 3 x lev
## 4 x catP
## 5 x catB
## 6 z clean
## 7 z isBAD
##
## $outcomename
## [1] "y"
##
## $vtreatVersion
## [1] '0.5.31'
##
## $outcomeType
## [1] "Binary"
##
## $outcomeTarget
## [1] TRUE
##
## $meanY
## [1] 0.5
##
## $splitmethod
## [1] "oneway"
##
## attr(,"class")
## [1] "treatmentplan"
print(treatmentsC$treatments[[1]])
## [1] "vtreat 'Categoric Indicators'('x'(integer,factor)->character->'x_lev_NA','x_lev_x.a','x_lev_x.b')"
Here we demonstrate the optional scaling feature of prepare()
, which scales and centers all significant variables to mean 0, and slope 1 with respect to y: In other words, it rescales the variables to “y-units”. This is useful for downstream principal components analysis. Note: variables perfectly uncorrelated with y necessarily have slope 0 and can’t be “scaled” to slope 1, however for the same reason these variables will be insignificant and can be pruned by pruneSig.
scale=FALSE
by default.
dTrainCTreated <- prepare(treatmentsC,dTrainC,pruneSig=c(),scale=TRUE)
head(dTrainCTreated)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catB z_clean z_isBAD
## 1 -0.1 -0.1666667 0 -0.2 -0.11976374 -0.38648649 -0.1
## 2 -0.1 -0.1666667 0 -0.2 -0.11976374 -0.21081081 -0.1
## 3 -0.1 -0.1666667 0 -0.2 -0.11976374 -0.03513514 -0.1
## 4 -0.1 0.1666667 0 0.1 -0.07564865 0.14054054 -0.1
## 5 -0.1 0.1666667 0 0.1 -0.07564865 0.00000000 0.5
## 6 0.5 0.1666667 0 0.4 0.51058851 0.49189189 -0.1
## y
## 1 FALSE
## 2 FALSE
## 3 TRUE
## 4 FALSE
## 5 TRUE
## 6 TRUE
varsC <- setdiff(colnames(dTrainCTreated),'y')
# all input variables should be mean 0
sapply(dTrainCTreated[,varsC,drop=FALSE],mean)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catB
## -6.938894e-18 0.000000e+00 0.000000e+00 1.850372e-17 1.387779e-17
## z_clean z_isBAD
## 9.251859e-18 -6.938894e-18
# all slopes should be 1 for variables with dTrainCTreated$scoreFrame$sig<1
sapply(varsC,function(c) { glm(paste('y',c,sep='~'),family=binomial,
data=dTrainCTreated)$coefficients[[2]]})
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catB z_clean z_isBAD
## 31.619223 4.158883 NA 4.698112 15.815409 5.733441 31.619223
dTestCTreated <- prepare(treatmentsC,dTestC,pruneSig=c(),scale=TRUE)
head(dTestCTreated)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catB z_clean z_isBAD
## 1 -0.1 -0.1666667 0 -0.2 -0.11976374 1.194595 -0.1
## 2 -0.1 0.1666667 0 0.1 -0.07564865 2.951351 -0.1
## 3 -0.1 0.1666667 0 0.7 -0.07564865 4.708108 -0.1
## 4 0.5 0.1666667 0 0.4 0.51058851 0.000000 0.5
# numeric example
dTrainN <- data.frame(x=c('a','a','a','a','b','b',NA),
z=c(1,2,3,4,5,NA,7),y=c(0,0,0,1,0,1,1))
head(dTrainN)
## x z y
## 1 a 1 0
## 2 a 2 0
## 3 a 3 0
## 4 a 4 1
## 5 b 5 0
## 6 b NA 1
dTestN <- data.frame(x=c('a','b','c',NA),z=c(10,20,30,NA))
head(dTestN)
## x z
## 1 a 10
## 2 b 20
## 3 c 30
## 4 <NA> NA
treatmentsN = designTreatmentsN(dTrainN,colnames(dTrainN),'y')
## [1] "desigining treatments Thu Apr 13 17:41:00 2017"
## [1] "designing treatments Thu Apr 13 17:41:00 2017"
## [1] " have level statistics Thu Apr 13 17:41:00 2017"
## [1] "design var x Thu Apr 13 17:41:00 2017"
## [1] "design var z Thu Apr 13 17:41:00 2017"
## [1] " scoring treatments Thu Apr 13 17:41:00 2017"
## [1] "have treatment plan Thu Apr 13 17:41:00 2017"
## [1] "rescoring complex variables Thu Apr 13 17:41:00 2017"
## [1] "done rescoring complex variables Thu Apr 13 17:41:00 2017"
print(treatmentsN)
## $treatments
## $treatments[[1]]
## [1] "vtreat 'Categoric Indicators'('x'(integer,factor)->character->'x_lev_NA','x_lev_x.a','x_lev_x.b')"
##
## $treatments[[2]]
## [1] "vtreat 'Prevalence Code'('x'(integer,factor)->character->'x_catP')"
##
## $treatments[[3]]
## [1] "vtreat 'Scalable Impact Code'('x'(integer,factor)->character->'x_catN')"
##
## $treatments[[4]]
## [1] "vtreat 'Deviation Fact'('x'(integer,factor)->character->'x_catD')"
##
## $treatments[[5]]
## [1] "vtreat 'Scalable pass through'('z'(double,numeric)->numeric->'z_clean')"
##
## $treatments[[6]]
## [1] "vtreat 'is.bad'('z'(double,numeric)->numeric->'z_isBAD')"
##
##
## $scoreFrame
## varName varMoves rsq sig needsSplit extraModelDegrees
## 1 x_lev_NA TRUE 0.222222222 0.2855909 FALSE 0
## 2 x_lev_x.a TRUE 0.173611111 0.3524132 FALSE 0
## 3 x_lev_x.b TRUE 0.008333333 0.8456711 FALSE 0
## 4 x_catP TRUE 0.233333333 0.2721791 TRUE 2
## 5 x_catN TRUE 0.172043011 0.3548219 TRUE 2
## 6 x_catD TRUE 0.086668611 0.5215921 TRUE 2
## 7 z_clean TRUE 0.336111111 0.1724763 FALSE 0
## 8 z_isBAD TRUE 0.222222222 0.2855909 FALSE 0
## origName code
## 1 x lev
## 2 x lev
## 3 x lev
## 4 x catP
## 5 x catN
## 6 x catD
## 7 z clean
## 8 z isBAD
##
## $outcomename
## [1] "y"
##
## $vtreatVersion
## [1] '0.5.31'
##
## $outcomeType
## [1] "Numeric"
##
## $outcomeTarget
## [1] "y"
##
## $meanY
## [1] 0.4285714
##
## $splitmethod
## [1] "oneway"
##
## attr(,"class")
## [1] "treatmentplan"
dTrainNTreated <- prepare(treatmentsN,dTrainN,
pruneSig=c(),scale=TRUE)
head(dTrainNTreated)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catN x_catD
## 1 -0.0952381 -0.1785714 -0.02857143 -0.2 -0.17857143 -0.1785714
## 2 -0.0952381 -0.1785714 -0.02857143 -0.2 -0.17857143 -0.1785714
## 3 -0.0952381 -0.1785714 -0.02857143 -0.2 -0.17857143 -0.1785714
## 4 -0.0952381 -0.1785714 -0.02857143 -0.2 -0.17857143 -0.1785714
## 5 -0.0952381 0.2380952 0.07142857 0.2 0.07142857 0.2380952
## 6 -0.0952381 0.2380952 0.07142857 0.2 0.07142857 0.2380952
## z_clean z_isBAD y
## 1 -0.41904762 -0.0952381 0
## 2 -0.26190476 -0.0952381 0
## 3 -0.10476190 -0.0952381 0
## 4 0.05238095 -0.0952381 1
## 5 0.20952381 -0.0952381 0
## 6 0.00000000 0.5714286 1
varsN <- setdiff(colnames(dTrainNTreated),'y')
# all input variables should be mean 0
sapply(dTrainNTreated[,varsN,drop=FALSE],mean)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catN
## -3.965082e-18 0.000000e+00 -2.974054e-18 -5.551115e-17 -3.965082e-18
## x_catD z_clean z_isBAD
## -9.515810e-17 4.757324e-17 -3.967986e-18
# all slopes should be 1 for variables with treatmentsN$scoreFrame$sig<1
sapply(varsN,function(c) { lm(paste('y',c,sep='~'),
data=dTrainNTreated)$coefficients[[2]]})
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catN x_catD z_clean
## 1 1 1 1 1 1 1
## z_isBAD
## 1
# prepared frame
dTestNTreated <- prepare(treatmentsN,dTestN,
pruneSig=c())
head(dTestNTreated)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catN x_catD z_clean
## 1 0 1 0 0.5714286 -0.17857143 0.5000000 10.000000
## 2 0 0 1 0.2857143 0.07142857 0.7071068 20.000000
## 3 0 0 0 0.0000000 0.00000000 0.7071068 30.000000
## 4 1 0 0 0.1428571 0.57142857 0.7071068 3.666667
## z_isBAD
## 1 0
## 2 0
## 3 0
## 4 1
# scaled prepared frame
dTestNTreatedS <- prepare(treatmentsN,dTestN,
pruneSig=c(),scale=TRUE)
head(dTestNTreatedS)
## x_lev_NA x_lev_x.a x_lev_x.b x_catP x_catN x_catD
## 1 -0.0952381 -0.1785714 -0.02857143 -0.2 -1.785714e-01 -0.1785714
## 2 -0.0952381 0.2380952 0.07142857 0.2 7.142857e-02 0.2380952
## 3 -0.0952381 0.2380952 -0.02857143 0.6 -1.586033e-17 0.2380952
## 4 0.5714286 0.2380952 -0.02857143 0.4 5.714286e-01 0.2380952
## z_clean z_isBAD
## 1 0.9952381 -0.0952381
## 2 2.5666667 -0.0952381
## 3 4.1380952 -0.0952381
## 4 0.0000000 0.5714286
Related work: