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Abstract

We present a model relating materials to the sounds they
make when struck. The model exploits a shape-invariant
property of materials: the angle of internal friction. We
demonstrate the utility of this model in both analyzing and
synthesizing sounds generated by impulsive excitation. For
the analysis of impact sounds, we present an active ap-
proach for discriminating different materials by impulsively
contacting (hitting) them, and sensing and interpreting the
resulting sounds. Experimental results suggest that shape-
invariance may be encoded in the functional form of the re-
lation between the angle of internal friction and frequency.
For the recreation of impact sounds, we identify two key
problems—the impact sound reconstruction problem, and
the impact sound synthesis problem—and discuss prelimi-
nary considerations in developing solutions.

1 Introduction

Computer vision and computer graphics both exploit
models of geometry and radiometry. The vision and graph-
ics fields have evolved to view those models from diftering
perspectives, one from the point of view of image analysis,
and the other from the point of view of image synthesis.
Despite the difference in perspective, the fields rely on a
similar set of underlying models.

Computer audition and computer sound generation need
an analogous set of models. For the particular case of
speech, these models have already been developed in the
speech recognition and speech synthesis fields. However,
models for complex sounds are significantly less developed.

In this paper we develop a model relating materials to the
sounds they make when struck, and demonstrate its utility
in both analysis and synthesis of impact sounds. We restrict
our attention to the sounds of impact—sounds generated

1015-4651/96 $5.00 © 1996 IEEE
Proceedings of ICPR ’96

15213

by impulsive excitation of a material—because such sounds
are fundamental, in the sense that many complex sounds are
composed from a number of elementary impact sounds.

In the next section on impact sound analysis, we iden-
tify related research, present the theoretical framework for
a shape-invariant acoustic measure, describe our novel ap-
proach to estimating material type, and present and discuss
experimental results. In the following brief section on im-
pact sound synthesis, we formulate and state two specific
problems in generating sounds of impact. We conclude the
paper with a discussion of future research directions and
applications.

2 Analysis of Impact Sounds

Consider a metal rod and a wooden rod of the same
length and diameter. When you strike the metal rod with
your knuckle, it rings; when you strike the wooden rod. it
produces a much shorter “thud” sound. This difference in
the sound despite the same excitation is due to the difference
in the way that the materials vibrate, which in turn is due
to stress/strain properties. The rods sound ditferent because
they have fundamentally different material properties. so
sound waves travel through them quite difterently.

Now consider two metal rods that are identical except that
one is twice as long as the other. Given the same excitation.
the shorter rod will “ring” at a higher frequency than the
longer rod. The rods sound different because the waves
travel different distances inside them.

How can these differences in the way things sound, one
due to material and one due to shape. be resolved? Or.
in other words, What acoustic information is diagnostic of
material, but invariant over object shape?

This fundamental question, and the example that led up
to it, concern the sensory modality of audition. And that
will be the central topic of this paper. However. we are
developing a general approach, applicable to all sensing



modalities. Before plunging into the central topic of the
paper, we first describe the more general approach.

By definition, a material property is independent of the
size and shape of a particular sample. Although there are
visual cues to material properties (for example, surface lu-
minance is a cue to the coefficient of friction), reliable deter-
mination of the material composition of an unknown object
generally requires contact with it. Humans who wish to
determine material properties show stereotypical patterns of
manual exploration; they press, poke, tap, heft, squeeze,
shake, rub, and strike, according to the type of information
desired [6]. We are developing arobotic approach analogous
to these patterns of human behavior.

In our approach, materials are disambiguated by actively
contacting and probing them and by sensing the result-
ing forces, displacements, and sounds. One can visualize
this capability by imagining a game of non-verbal “Twenty
Questions,” in which one player is the robot and the other
player is any object placed in the robot workspace. The
robot probes (presses, pokes, taps, etc) the object, in ef-
fect asking questions about the object stiffness, density, and
other material properties. At the end of the game the robot
announces its decision about the material composition of the
object.

2.1 Related Research

Compared to the perception of shape or position, percep-
tion of material properties isafield inits early infancy. Inour
previous work, Durst and Krotkov [2] develop a decision-
map classifier that achieves good performance for a collec-
tion of known objects and materials, but does not address
or achieve shape-invariance. Krotkov [5] reports prelim-
inary investigations using a variety of sensory modalities,
including force, vision, touch, and audition.

The artificial intelligence, robotics, civil engineering,
mechanical engineering, and materials literature documents
two families of techniques to estimate mechanical and mass
properties, one employing non-contact sensing, the other
employing contact sensing. However, no strongly related
work appears in this literature, with the exception of Wildes
and Richards [10], which is discussed in detail below.

The auditory perception literature typically deals with
problems such as the *cocktail party” (attend to one con-
versation and then switch) and “Prince Shotoku” (attend to
several conversations simultaneously) effects [4, 12]. One
exception is the work of Warren and Verbrugge [9], which
addresses the psychophysics of the perception of breaking
and bouncing events. The psycho-acoustics literature dwells
only briefly on the topic of perceiving materials from impact
sounds [1]. The physics literature [7, 11] addresses the re-
lation between acoustic waves and material properties, but
the level of analysis is not appropriate for our effort.
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2.2 Theory

Wildes and Richards [ 10] have advanced a theoretical ap-
proach to recovering the material type of an object from the
sound generated when it is struck. They restrict their atten-
tion to anelastic solids, and study the modulus of compliance
as the key to understanding the vibration of the struck ob-
ject. Following classical analysis they relate the modulus
of compliance to the angle of internal friction. This is a
shape-invariant property of a given material.

They propose two methods for determining the angle of
internal friction of an unknown sample: one that impul-
sively excites the sample and then measures the acoustic
decay rate; another that periodically (say, sinusoidally) ex-
cites the sample and then identifies the bandwidth of the
acoustic signals. They did not experimentally verify either
method, although they did cite supporting evidence trom
earlier empirical studies {3].

Let us consider the decay rate approach first, because ex-
pertmentally it is simpler to provide an impulsive excitation
than a periodic one. In this method, the angle of internal fric-
tion ¢ is determined by the time 7, it takes the amplitude of
vibration to decay to Ll of'its original value after the material
sample is struck. According to Wildes and Richards,

1
i

tan ¢ = (h
where f is the observed frequency associated with the ampli-
tude. Thus, the problem of determining the angle of internal
friction ¢ reduces to determining 7.

Let 0 be aretention parameter representing the proportion
of the amplitude present at time #; that is still present at 7,1
For an exponential process, 0 is constant for all i, and the
amplitude A(7) at time 7 is then given by

A(I) = AQ()I .

where Ay is the initial amplitude.

If the amplitude has decayed to a proportion of } of the
mnitial value, then A(f) = "f Note that at this point, r = 1., by
definition. So, ‘—‘(ﬂ—’ = Ao0". Canceling Ao, taking the natural
logarithm of both sides, and rearranging leads to

B 1
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Thus, the problem of determining 1, reduces to determining
logé.
Assuming an exponential decay process,

A1) = Agll' = Age™" 18"

Taking logarithms yields log A(¢) = log Ay — tlog 0. Thus,
the plot of log amplitude against time will be linear with



slope equal to log#. So, we can determine log # by finding
the envelope of the signal waveform as a one-dimensional
curve, plotting this curve on a logarithmic scale (this will be
linear), and identifying the slope of the plotted line.

Summarizing, in theory we can determine log f from the
original waveform, and then determine ?, using (2), and
finally determine tan ¢ from (1).

2.3 Approach

We analyze the discrete digital signal x[#] in four main
steps: (1) Compute the signal spectrogram. (2) Determine
where the contact transient ends, and where the “signal”
begins. (3) Find bands of concentrated signal energy; (4)
For each band, determine the angle of internal friction.

Spectrogram The spectrogram of a signal describes the
distribution of the signal energy in the time-frequency plane.
The spectrogram is a popular representation in fields such
as speech recognition and acoustic analysis. Formally, the
spectrogram S[/, k] is the squared modulus of X[/, k], where

+00

X[ k] = Z x[nlgln — Ne~ /4!

h=—00

(3)

is the discrete-time Fourier transform of a windowed version
x{n]gln — I} of the original signal x[n].

We compute the spectrogram by performing the follow-
ing steps: (1) Split the given signal into Ny, overlapping
segments; (2) For each segment, establish a Hanning win-
dow of size Nggr; (3) Compute the Fourier transform of each
windowed segment.

As an example, Figure 1 shows the spectrogram of the
signal produced by striking an aluminumrod, computed with
Ngpr = 256 samples and Noveriap = Nrer/2. The energy is
concentrated in four main bands, at approximately 1200,
2500, 4000, and 6000 Hz. Note that these bands are not
harmonics of a common fundamental.

Transient Due to the impulsive contact, the early part of
the signal contains energy at all frequencies. This transient
effect, which sounds like a click, does not convey meaning-
ful modal information, so we desire to exclude this segment
of the signal from analysis. In brief, we determine where the
transient ends and signal begins by computing correlations
between adjacent temporal windows with respect to their
amplitude values, and identifying a dip in the correlation
value caused by the transition from the click to the residual
excitation of the rod.

Bands Once we have discovered when the signal starts,
we then identify those frequency bands with a significant
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Figure 1. Spectrogram for aluminum rod

concentration of energy. We accomplish this in five steps:
(1) To find the initial location of bands, we begin with a
thresholding operation, perform a region growing operation
and connected component analysis on the surviving mag-
nitudes. (2) To improve this coarse estimate, we seck the
smallest sub-bands that contain a given fraction (currently.
99 percent) of the within-band power. (3) We eliminate
those bands that contain only a small percentage of the total
power. (4) For each remaining band, we identity the start
as the point of maximum power, and the end as the point
at which the power has declined to 0.2 percent of the maxi-
mum power. (5) For each band, we determine the frequency
which contains the most power.

In operation, the five processing steps identified three
bands when applied to the spectrogram in Figure {. The
band at 1000 Hz was discarded because it contained less
than one percent of the total power.

Angle of Internal Friction For each band computed in the
previous stage, we fit a line to the within-band log power.
At the same time, we compute the goodness (r value) of
the linear fit and the length of the line. We filter out those
lines with r < 0.866 (the fit accounts for 75 percent of
the variance) and with length less than 10 time steps. The
slope of each line determines the log? term in (2). Now it
is possible to determine tan ¢ for each frequency band by
substituting (2) into (1).

Figure 2 illustrates the total power associated with the
three bands (band 1 is at 6000 Hz, band 2 is at 4000 Hz.
and band 3 1s 2500 Hz). It also shows the background.
defined as the sum of all spectrogram magnitudes that did
not pass the threshold test described in the previous section.
In addition, the figure shows the lines fit to the three power
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Figure 2. Linear fits to log power within bands

curves. Bands I and 2 are reasonably linear (r values above
0.95, that is, the fit accounts for more than 90 percent of the
variance), and band 3 is not (r value of 0.70).

Experiments To assess the validity of the decay rate ap-
proach to identifying the angle of internal friction, we pro-
duced thin rods of wood, brass, aluminum, glass, and plas-
tic. For each material, we produced two rods, one of length
L =15 cm and one of length 2L.

We suspended each rod by string from above, and struck
it with a well-damped solid object. We used an electret con-
denser microphone, and fed the signal to an analog/digital
converter installed on a Macintosh workstation, operating at
sampling rate of f wumpre = 22 kKHz.

The acquired data relate mtan¢ and the frequency of
greatest power. Each data point represents a single band; a
given trial may provide from 14 points. We fit quadratic
functions of the form

Ttané = af 2+ aif +ao

to the data points for each material, finding the a; coefficients
minimizing the squared error. The fitting procedure com-
bined data from short and long samples, with the exception
of brass, where the short rod produced a single frequency
with an associated value of tan ¢ that was anomalous with
respect to the function obtained with the long rod.

The salient features of the results are the following:

. The variability assoctated with a single frequency
tends to be reasonably small, relative to the variability across
frequencies, suggesting some stability to the estimated tan ¢
at a frequency.

2. The tan ¢ values exhibit clear variation across fre-
quencies. Hence different samples, which produce bands
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at different frequencies, will give different distributions of
tan ¢.

3. With the exception of brass. it appears that the relation
between tan ¢ and frequency can feasibly be fit by a single
quadratic, with #* ranging from 0.35 to 0.84 in the present
data.

4. Whether the quadratic is concave upward or downward
varies with the material.

Discussion On the basis of the theory presented in Section
2.2, we expected the value of tan ¢ to vary with material type
and to remain constant despite changes in the length of the
material sample. We find that the angle of internal friction
is not invariant over the frequency of the sound spectrum
for which it is estimated. We are surprised to observe the
frequency dependence of the tan ¢ values, since the theory
does not predict it. This frequency dependence suggests
that the shape invariance may be encoded in the functional
form of the relation between tan ¢ and frequency. Further,
the surprising results indicate the need for a new theory.

3 Synthesis of Impact Sounds

In this section we formulate and state two specific prob-
lems in creating an acoustic signal representing a realistic
impact sound. Just as computer graphics is the dual of
computer vision, so is this general problem the dual of the
analysis problem studied in Section 2. We defer solutions
to these problems to a future paper.

The literature on audio signal synthesis is dominated by
work on speech signals. Our literature review did not reveal
prior work addressing synthesis of contact sounds. How-
ever, the speech literature has dealt to some extent with
the problem of synthesis from limited spectral information.
Shannonet al. [8] observe nearly perfect speech recognition
under conditions of greatly reduced spectral information.
namely, three bands of modulated noise. They conclude
that the presentation of a dynamic temporal pattern in only a’
few broad spectral regions is sufficient for the recognition of
speech. We observe that if such limited information suffices
for the recognition of speech, it seems plausible that it may
also suffice for the recognition of impact sounds.

3.1 Impact Sound Reconstruction Problem

The impact sound reconstruction problem can be stated
as follows: Given the spectrogram of a signal representing
an impact sound, such as that shown in Figure 1; Reconstruct
the impact sound signal.

Before stating our solution to this problem. we recall that
expression (3) computes X, the discrete-time Fourier trans-
form of a windowed version of the original signal x. If there



are N samples in the original time series signal, then there are
N, = N/Ngrr samples (columns) in its spectrogram. Given
X, an algorithm for reconstructing the acoustic signal can
be stated as follows. For each column of the spectrogram
(¢=1,2,...,N,), perform the three following steps:

I Take the inverse Fourier transform y[n]
F~NXUL kD).

2. Compensate the resulting time series for window
effects. If the forward Fourier transform uses the Hanning
window of length Nerr

k= ]123~--<NFFT~

[] ( 27k
- 0§ | ———
Nrpr— 1

then “un-window” the time series by

_ YK

T

1
H[k] = 5

y [kl

3. Accumulate data segments. Append the time series of
length Nrrr created from the c-th column of the spectrogram
to the reconstructed time series ) by

YINprr x (c= 1)+ kl=y"[k] , k=1,2,... Nepr .

By construction, this accumulates Ngpr x N, = N samples
iny’, as required.

We verified this approach to reconstructing impact
sounds by applying steps 1-3 to the spectrograms computed
from recorded impact sounds. We found that the correlation
between the original and reconstructed signals approached
unity, and conclude that there is virtually no difference be-
tween the two signals.

3.2 Impact Sound Synthesis Problem

The impact sound synthesis problem can be stated as
follows: Given (1) a set {(tan¢;,f;,€;)} specifying triples
of internal friction parameters, center frequencies, and band
widths, (2) the shape of a specimen, and (3) an impact force
model; Synthesize a realistic impact sound.

This problem differs from the impact sound reconstruc-
tion problem in starting with no spectrogram data. Instead,
it starts with the angle of internal friction. This quantity
determines the amplitude decay over time, but does not di-
rectly provide phase information. Without phase, it is not
possible to generate a unique acoustic signal. Thus, one of
the key challenges is to identify the signal phase.

4 Future Work

We hope to apply the insights gained by this investiga-
tion in at least two fields of application. In the field of
non-destructive evaluation, we will develop new materials
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testing procedures based on quantitative measurement of the
angle of internal friction. In the field of virtual reality, we
will develop low-bandwidth representations ot real-world
sounds that can be used to create multimodal events.

A great deal of work remains before such applications
are feasible. Future work will concentrate on implement-
ing methodological insights in a new experimental setup
including more repeatable striking mechanisms and faster
sampling devices. Future work will also expand the in-
quiry to encompass more thorough study of shape effects.
beginning with variable length rods and extending to plates.
solids, and irregularly formed objects.

In the more distant future, alternative measures and ap-
proaches need to be pursued before the new field of material-
based acoustic modeling emerges from its early infancy,
and contributes productively to our understanding ot what
sounds tell us about the real world.
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