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Abstract

We present an active approach for discriminating different materials by im-
pulsively contacting (hitting) them, and sensing and interpreting the resulting
sounds. In theory, the angle of internal friction is diagnostic of material, but
invariant over object shape. In our experiments, we observe that the angle of
internal friction is not invariant over the frequency of the sound spectrum for
which it is estimated. Hence, samples of different shapes, which exhibit power
concentration at different frequencies, exhibit different values of the angle of
internal friction. However, the results suggest that shape-invariance may be
encoded in the functional form of the relation between the angle of internal
friction and frequency.

1. Introduction
Consider a metal rod and a wooden rod of the same length. When you strike the metal
rod with your knuckle, it rings; when you strike the wooden rod, it produces a much
shorter “thud” sound. This difference in the sound despite the same excitation is due to
the difference in the way that the materials vibrate, which in turn is due to stress/strain
properties. The rods sound different because they have fundamentally different material
properties, so sound waves travel through them quite differently.

Now consider two metal rods that are identical except that one is twice as long as the
other. Given the same excitation, the shorter rod will “ring” at a higher frequency than the
longer rod. The rods sound different because the waves travel different distances inside
them.

How can these differences in the way things sound, one due to material and one due
to shape, be resolved? Or, in other words, What acoustic information is diagnostic of
material, but invariant over object shape?

This fundamental question, and the example that led up to it, concern the sensory
modality of audition. And that will be the central topic of this paper. However, we are
developing a general approach, applicable to all sensing modalities. Before plunging into
the central topic of the paper, we first describe the more general approach.

By definition, a material property is independent of the size and shape of a particular
sample. Although there are visual cues to material properties (for example, surface



luminance is a cue to the coefficient of friction), reliable determination of the material
composition of an unknown object generally requires contact with it. Humans who wish
to determine material properties show stereotypical patterns of manual exploration; they
press, poke, tap, heft, squeeze, shake, rub, and strike, according to the type of information
desired [3]. We are developing a robotic approach analogous to these patterns of human
behavior.

In our approach, materials are disambiguated by actively contacting and probing them
and by sensing the resulting forces, displacements, and sounds. One can visualize this
capability by imagining a game of non-verbal “Twenty Questions,” in which one player is
the robot and the other player is any object placed in the robot workspace. The robot probes
(presses, pokes, taps, etc) the object, in effect asking questions about the object stiffness,
density, and other material properties. At the end of the game the robot announces its
decision about the material composition of the object.

The capability to perceive material has many potential applications. In general, knowl-
edge of material properties and classes can improve performance of many tasks involving
physical interaction. In many real-world scenarios, such knowledge is not given in ad-
vance; instead, it must be determined at a worksite or in the field, without jigs or fixtures.
Specific applications include grasping, non-destructive evaluation and inspection, reason-
ing about functionality, handling hazardous waste, recycling, excavating, and traversing
natural terrain.

In this paper, we describe a shape-invariant measure of material type, derived through
acoustic sensing, and present results of experiments that confirm theoretical predications
that the measure is diagnostic of material type. We begin by briefly referring to related
research. We present the theoretical framework for the shape-invariant acoustic measure
in Section 3. Next, we describe our novel approach to estimating material type in Section
4, and we present experimental results in Section 5. We conclude the paper with a critical
discussion of progress to date.

2. Related Research
Compared to the perception of shape or position, perception of material properties is a
field in its early infancy.

The artificial intelligence, robotics, civil engineering, mechanical engineering, and
materials literature documents two families of techniques to estimate mechanical and mass
properties, one employing non-contact sensing, the other employing contact sensing. We
explore this literature in detail elsewhere [2].

3. Theory
Wildes and Richards [4] have advanced a theoretical approach to recovering the material
type of an object from the sound generated when it is struck. They restrict their attention
to anelastic solids, and study the modulus of compliance as the key to understanding the
vibration of the struck object. Following classical analysis they relate the modulus of
compliance to the angle of internal friction. This is a shape-invariant property of a given
material.

They propose two methods for determining the angle of internal frictionof an unknown
sample: one that impulsively excites the sample and then measures the acoustic decay
rate; another that periodically (say, sinusoidally) excites the sample and then identifies
the bandwidth of the acoustic signals. They did not experimentally verify either method,
although they did cite supporting evidence from earlier empirical studies [1].



Let us consider the decay rate approach first, because experimentally it is simpler to
provide an impulsive excitation than a periodic one. In this method, the angle of internal
friction � is determined by the time te it takes the amplitude of vibration to decay to 1

e of
its original value after the material sample is struck. According to Wildes and Richards,

tan� =
1

�f te
; (1)

where f is the observed frequency associated with the amplitude. Thus, the problem of
determining the angle of internal friction � reduces to determining te.

Let � be a retention parameter representing the proportion of the amplitude present at
time ti that is still present at ti+1. For an exponential process, � is constant for all i, and the
amplitude A(t) at time t is then given by

A(t) = A0�
t ;

where A0 is the initial amplitude.
If the amplitude has decayed to a proportion of 1

e of the initial value, then A(t) = A0
e .

Note that at this point, t = te, by definition. So, A0
e = A0�

te . Canceling A0, taking the
natural logarithm of both sides, and rearranging leads to

te = �
1

log �
: (2)

Thus, the problem of determining te reduces to determining log �.
Assuming an exponential decay process,

A(t) = A0�
t = A0e�t log � :

Taking logarithms yields log A(t) = log A0�t log �. Thus, the plot of log amplitude against
time will be linear with slope equal to log �. So, we can determine log � by finding the
envelope of the signal waveform as a one-dimensional curve, plotting this curve on a
logarithmic scale (this will be linear), and identifying the slope of the plotted line.

Summarizing, in theory we can determine log� from the original waveform, and then
determine te using (2), and finally determine tan � from (1).

4. Approach
We analyze the discrete digital signal x[n] in four main steps: (1) Compute the signal
spectrogram; (2) Determine where the contact transient ends, and where the “signal”
begins; (3) Find bands of concentrated signal energy; (4) For each band, determine the
angle of internal friction.

4.1. Spectrogram
The spectrogram of a signal describes the distribution of the signal energy in the time-
frequency plane. The spectrogram is a popular representation in fields such as speech
recognition and acoustic analysis. Formally, the spectrogram S[l; k] is the squared modulus
of X[l; k], where

X[l; k] =
+1X

n=�1

x[n]g[n� l]e�j 2�k
n l

is the discrete-time Fourier transform of a windowed version x[n]g[n� l] of the original
signal x[n].
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Figure 1. Microphone output after striking aluminum rod (left), spectrogram (right)

We compute the spectrogram by performing the following steps: (1) Split the given
signal into Noverlap overlapping segments; (2) For each segment, establish a Hanning
window of size NFFT; (3) Compute the Fourier transform of each windowed segment.

As an example, Figure 1 shows the original signal recorded at f sample = 16 kHz after
striking an aluminum rod. The figure also shows the spectrogram of that signal, computed
with NFFT = 256 samples and Noverlap = NFFT=2. The energy is concentrated in four main
bands, at approximately 1200, 2500, 4000, and 6000 Hz. Note that these bands are not
harmonics of a common fundamental.

4.2. Transient
Due to the impulsive contact, the early part of the signal contains energy at all frequencies.
This transient effect, which sounds like a click, does not convey meaningful modal
information, so we desire to exclude this segment of the signal from analysis.

For this, we examine correlations between the spectrogram magnitudes at adjacent
temporal windows, computed across frequencies. During the click, the spectrogram
magnitudes are highly correlated from instant to instant. Immediately after the click,
as energy begins to concentrate in relatively narrow bands, the spectrogram frequencies
with high magnitudes are not the same as those in the click. This causes the correlation
between adjacent windows to dip. Well after the click, the spectrogram magnitudes are
again highly correlated. Based on these observations, we determine where the signal
begins by identifying when the correlation coefficients rise from the dip caused by the
transition from the click to the residual excitation of the rod.

Let S[t] be a vector of length NFFT=2 representing the spectrogram magnitudes at
time t. In effect, this is a column in the spectrogram shown in Figure 1. For all pairs of
time-adjacent vectors, we compute the correlation coefficient �t = corr(S[t]; S[t + 1]). We
search for the time at which �t takes on its globally minimum value. We then search for
the time, following that, at which �t takes on a locally maximum value. We treat this as
the end of the transient. Figure 2 illustrates the time selected as the start of the signal.

4.3. Bands
Once we have discovered when the signal starts, we then identify those frequency bands
with a significant concentration of energy. We accomplish this in five steps: (1) Find initial
location of bands; (2) Refine initial location estimates; (3) Filter out weak bands; (4) For
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Figure 2. Correlation versus time for data in Figure 1 (left), spectral bands (right)

each remaining band, determine when signal starts and ends; (5) For each remaining signal
in a band, determine the frequency with greatest power.

First, to find the initial location of bands, we begin with a thresholding operation: For
each time step, we mark as background those spectrogram magnitudes that contribute little
to the total power at that time. In the current implementation, the threshold value is set to be
the power we would expect if the energy was distributed uniformly across all frequencies.
Next, we perform a region growing operation and connected component analysis on the
surviving magnitudes. This results in a coarse estimate of the band locations.

Second, to improve this coarse estimate, we seek the smallest sub-bands that contain
a given fraction (currently, 99 percent) of the within-band power. This produces bands
that are significantly more focussed.

Third, we eliminate those bands which contain significantly less power than the others.
In the current implementation, we delete all bands that contribute less than 1 percent of
the total power.

Fourth, for each remaining band, we identify when the signal starts and ends. The
start is the point of maximum power, and the end is the point at which the power has
declined to 0.2 percent of the maximum power.

Finally, for each band, we determine the frequency which contains the most power.
We store this value to be used in the computation of tan�.

Figure 2 illustrates the result of these five processing steps applied to the spectrogram
in Figure 1. The algorithm identified three bands. The band at 1000 Hz was discarded
because it contained less than one percent of the total power.

4.4. Angle of Internal Friction
For each band computed in the previous stage, we fit a line to the within-band log power.
At the same time, we compute the goodness (r value) of the linear fit and the length of
the line. We filter out those lines with r < 0:866 (the fit accounts for 75 percent of the
variance) and with length less than 10 time steps. The slope of each line determines
the log � term in (2). Now it is possible to determine tan � for each frequency band by
substituting (2) into (1).

Figure 3 illustrates the total power associated with the three bands (band 1 is at 6000
Hz, band 2 is at 4000 Hz, and band 3 is 2500 Hz). It also shows the background, defined
as the sum of all spectrogram magnitudes that did not pass the threshold test described in
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Figure 3. Linear fits to log power within bands

the previous section. In addition, the figure shows the lines fit to the three power curves.
Bands 1 and 2 are reasonably linear (r values above 0.95, that is, the fit accounts for more
than 90 percent of the variance), and band 3 is not (r value of 0.70).

5. Experiments
To assess the validity of the decay rate approach to identifying the angle of internal friction,
we produced thin rods of wood, brass, aluminum, glass, and plastic. For each material,
we produced two rods, one of length L = 15 cm and one of length 2L.

We suspended each rod by string from above. We struck the rods with “found” objects,
including a soldering pencil stand (selected because its vibrations damped out more rapidly
than did the other objects we tried) and the plastic handle of a screwdriver. We used an
electret condenser microphone, and fed the signal to an analog/digital converter installed
on a Macintosh workstation, operating at sampling rate of f sample = 22 kHz.

Figure 4 plots the observed data relating � tan � and the frequency of greatest power
(the � was omitted from the figure labels). Each point represents a single band; a given
trial may provide from 1–4 points. We fit quadratic functions � tan� = a2f 2 + a1f + a0 to
the data points for each material, finding the ai coefficients minimizing the squared error.
The fitting procedure combined data from short and long samples, with the exception of
brass, for which the single frequency available for the short rod appears anomalous with
respect to the function obtained with the long rod.

In summary, the salient features of these graphs are the following:
(1) The variability associated with a single frequency tends to be reasonably small,

relative to the variability across frequencies, suggesting some stability to the estimated
tan � at a frequency.

(2) The tan� values exhibit clear variation across frequencies. Hence different sam-
ples, which produce bands at different frequencies, will give different distributions of
tan �.

(3) With the exception of brass, it appears that the relation between tan� and frequency
can feasibly be fit by a single quadratic, with r2 ranging from 0.35 to 0.84 in the present
data.

(4) Whether the quadratic is concave upward or downward varies with the material.
Table 1 tabulates the parameters of the quadratic. The R2 term represents the variance
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Figure 4. Experimental results

accounted for by the quadratic function, which we interpret as the goodness of the fit.

6. Discussion

On the basis of the theory presented in Section 3, we expected the value of tan� to vary
with material type and to remain constant despite changes in the length of the material
sample. We find that the angle of internal friction is not invariant over the frequency of



Material a2 a1 a0 r2

Aluminum 1.88 -10.29 6.92 0.61
Brass (long) 0.49 -1.84 -0.19 0.96

Glass -2.54 17.24 -36.16 0.38
Wood -6.97 51.09 -102.76 0.84
Plastic 0.97 -1.44 -28.19 0.35

Table 1. Parameters of quadratic function � tan � = a2f 2 + a1f + a0

the sound spectrum for which it is estimated. We are surprised to observe the frequency
dependence of the tan� values, since the theory does not predict it. This frequency
dependence suggests that the shape invariance may be encoded in the functional form of
the relation between tan� and frequency. Further, the surprising results indicate the need
for a new theory.

Our experience during the course of the experiments has yielded a number of method-
ological insights that will influence future investigations. The first observation is that the
experimental method for suspending the sample is more important than we first believed.
In particular, the motion of the sample after striking must be taken into account or oth-
erwise “matched.” The second observation is that a higher sampling rate is needed to
acquire reliable measurements from non-metals. Finally, the spectrogram appears to be a
very powerful representation that is well-suited to the discrimination task at hand.

We hope to apply the insights gained by this investigation in at least two fields of
application. In the field of non-destructive evaluation, we will develop new materials
testing procedures based on quantitative measurement of the angle of internal friction. In
the field of virtual reality, we will develop low-bandwidth representations of real-world
sounds that can be used to create multimodal events.

A great deal of work remains before such applications are feasible. Future work will
concentrate on implementing these methodological insights in a new experimental setup
including more repeatable striking mechanisms and faster sampling devices. Future work
will also expand the inquiry to encompass more thorough study of shape effects, beginning
with variable length rods and extending to plates, solids, and irregularly formed objects.

In the more distant future, alternative measures and approaches need to be pursued
before the new field of perception of material emerges from its early infancy, and realizes
its potential for revolutionizing robotic interaction with the real world.
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