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Acquiring Design Rationale Automatically

Abstract

The value of comprehensive rationale for documenting a design has long been recognized.

However, designers rarely produce detailed rationale in practice because of the substantial time

investment required. Efforts to support the acquisition of rationale information have focused on

languages and tools for structuring the acquisition process, but still require substantial involvement

on the part of the designer. This paper describes an experimental system, the Rationale Construc-

tion Framework (RCF), that acquires rationale information for the detailed design process without

disrupting a designer’s normal activities. The underlying approach involves monitoring designer

interactions with a commercial CAD tool to produce a rich process history. This history is subse-

quently structured and interpreted relative to a background theory of design metaphors that enable

explanation of certain aspects of the design process. The framework provides an environment

that can acquire rich, meaningful rationale information in a time- and cost-effective manner, with

minimal disruption to the designer.

Keywords: Design Rationale, Automated Acquisition, Plan Recognition, Clustering, Knowledge-

based Methods
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1 Introduction

Representations of designs in current-generation computer-assisted design (CAD) frameworks

consist primarily of diagrammatic specifications, possibly augmented with simple annotations and

ad hoc documentation. Even the most sophisticated design systems lack much in the way of

structured documentation for the design: Why is the design the way it is? What key decisions

and tradeoffs were made? What interactions and dependencies exist among components? What

assumptions are critical for the success of the designed artifact?

It is well accepted within the design community that the availability of explicit, declaratively

represented design rationale would be a tremendous asset. Design rationale would serve as a record

of the basic structure of a design, codifying how the design satisfies specified requirements, as

well as key decisions that were made during the design process. This information would facilitate

collaboration among multiple distributed designers – a tremendous benefit for large-scale design

efforts. Rationale would also provide guidance in exploring alternative designs, whether as part of

the natural evolution of a design or in response to changing requirements. Finally, design rationale

would enable both easier maintenance of artifacts over their life cycles and more effective reuse

of designs by making it easier for downstream engineers to understand how a design works. For

example, (Brazier et al., 1997) presents an example of stored rationale being used in the redesign

of a model passenger aircraft to accommodate changes in the overall design requirements.

Despite the tremendous advantages that explicit design rationale would provide, designers

rarely produce it in practice because of the substantial time commitment required. Tools that sup-

port the specification of structured rationale by a designer have met with limited success because

they either demand substantial designer time to enter information (Carroll and Moran, 1991) or

they change the manner in which designers work (Conklin and Yakemovic, 1991). Furthermore,

designers have little motivation to participate in such activities since the benefits surface down-

stream of their contributions. Recently, nonintrusive approaches have been explored that involve

video or audio recording of design sessions (Chen et al., 1991; Shipman and McCall, 1997); how-

ever, a lack of structure in the produced representations hinders effective use of the information

that they provide.

Given the tremendous value of structured design rationale but the unacceptable burden of con-

structing it manually, we were motivated to explore the use of artificial intelligence (AI) methods

for automatically generating rationale without disrupting the normal design process. Our work

focuses on the detailed design phase, in which tools (e.g., CAD systems, analysis packages) are
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used to generate a schematic that meets the specifications laid out for an artifact. This contrasts

with the conceptual design phase, in which the scope and capabilities are set for the artifact to be

designed.

1.1 Rationale: Conceptual vs. Detailed Design

Moran and Carroll (Moran and Carroll, 1996) describe the life cycle of an artifact as having a

requirements, or conceptual phase; a (detailed) design phase, which results in a detailed specifica-

tion of the artifact; a building (or construction) phase; a deployment phase, in which the artifact is

marketed, distributed, and used; a maintenance phase; and possibly a redesign phase, in which the

original design is modified to produce a new artifact.

The conceptual phase focuses on identifying and resolving high-level issues of functionality

and requirements, with design rationale recording the justifications for the decisions that have

been made. Decisions are grounded primarily in assumptions or nontechnical criteria such as end-

user preferences. During detailed design, functionality and requirements may be refined. However,

issues such as component structures and interactions, validation, functionality, and design alterna-

tives are of greater importance. The level of abstraction at which these issues are considered is

much lower than during the conceptual phase. Choices and decisions are grounded primarily in

physical constraints on components and the designer’s insights into the composition of good de-

signs. These insights include criteria such as simplicity, ease of modification, and intuitive feel for

success. Thus, rationale for the detailed design phase focuses on how a given design works, and

why the specific detailed design choices were made.

Work to date on the acquisition of design rationales has focused on the issues and choices made

during the conceptual phase: deciding on the functional requirements for an object, and the high-

level design approaches to be pursued in meeting those requirements (Carroll and Moran, 1991).

There has been little work on capturing the decision-making and logic that underlies the process

of constructing the design itself. It has been shown that designers are reluctant to document their

actions during the detailed design process (Fischer et al., 1991). Because of this resistance, it is

critical to investigate nonintrusive methods for rationale acquisition during detailed design.

1.2 The Rationale Construction Framework

The premise for our work was the observation that many of the operations that a designer can

perform with modern CAD tools (the design substrate (Fischer and Lemke, 1988; Hutchins et al.,
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1986)) have meaningful semantic content. For example, CAD tools allow users to select objects

with assigned semantic types from predefined libraries. This contrasts with most tools for design-

ing software, where interactions are generally at the level of keystrokes. Nonintrusive monitor-

ing of the actions taken by a designer with a CAD tool would thus provide a rich, semantically

grounded process history for detailed design. Techniques from AI could be used to structure this

information into representations that would support query access and reasoning about designer

intent. Valuable reasoning methods would include clustering techniques to aggregate CAD oper-

ations into abstract summaries of designer activity, plan recognition to identify key episodes of

activity, and qualitative reasoning about the emerging design.

This paper describes the Rationale Construction Framework (RCF), which embodies the above

ideas in a system that automatically constructs rationale information for the detailed design pro-

cess. RCF records events and data of relevance to the design process, and structures them in

representations that facilitate generation of explanations for designer activities. RCF operates in

an opportunistic manner, extracting rationale-related information to the extent possible from ob-

served designer operations. For RCF, we interpret rationale broadly to encompass any information

that will further the understanding of a design and its development. This philosophy fits the gener-

ative paradigm (Gruber and Russell, 1992) for rationale construction, which focuses on supporting

general queries about a design and its evolution rather than answering fixed sets of questions.

RCF extracts two different types of rationale-related information. The first is a series of hierar-

chical abstractions of the design history: what the designer did, and when. In addition, RCF reasons

about intent – why the designer performed particular actions. A set of design metaphors, which

describe temporally extended sets of designer operations that constitute meaningful episodes of ac-

tivity, drives the extraction of rationale related to designer intent (Section 4.2). Design metaphors

provide the basis for inferring intent on the part of the designer by linking observed activities to

explanations for them. A rich query interface allows users to access extracted rationale from sev-

eral different perspectives, enabling them to overview the design history, and to elicit information

pertinent to their specific goals (Section 9).

Automatic generation of complete rationale for all aspects of a design is clearly infeasible.

Certainly, designers make many critical decisions that are not explicit in the designs nor in the

design process. The work reported here seeks to automate documentation of important but low-

level aspects of the design process in a time- and cost-effective manner, thus freeing designers to

focus their documentation efforts on the more creative and unusual aspects of the design. Ideally,

the methods presented here would be complemented by interactive rationale acquisition methods
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that would enable designers to extend or correct automatically generated information. The ultimate

goal is to produce an annotated design history that tracks dependencies, assumptions, and tradeoffs,

and so would greatly facilitate the understanding of a design by downstream designers.

We evaluated RCF informally by applying it in a case study that involved the design of a three-

degree-of-freedom surgical robotic arm.1 RCF recorded designer activity over several versions of

the arm, starting from a rough initial design, through various stages of refinements and optimiza-

tions. From these recordings, RCF was able to summarize designer activity at varying levels of

abstraction, identify phases where the designer concentrated on various parts or subassemblies or

where design parameters were tuned, track the results of design tradeoffs, and explain key design

changes. The results validate the idea that meaningful rationale can be generated nonintrusively

through application of appropriate AI techniques.

1.3 Different Perspectives on Rationale

As summarized by Shipman and McCall (Shipman and McCall, 1997), design rationale can be

viewed (and defined) from different perspectives:

Argumentation In this view, rationale captures the process of reasoning and discourse, either by a

single designer or a design team. Rationale consists of the problems or issues that arise in the

course of a design, along with pros and cons for each alternative. Rationale as argumentation

need not be passive, but rather can be used as a framework for structuring the design process,

in order to clarify and facilitate it. For example, Conklin and Yakemovic (Conklin and

Yakemovic, 1991) discuss the use of various implementations of IBIS (Rittel and Webber,

1973), or “Issue-Based Information System”, in commercial design settings. They report

that the use of these tools can often uncover key issues and communication breakdowns

during the design process that might otherwise have been missed, or not detected until a

later stage in the process.

Documentation From this perspective, rationale is viewed as a “decision trail” for use by ob-

servers outside of the design team. Rationale records what decisions were made, when, why,

and perhaps by whom. Information would be presented in a way that makes the decision

process clear to observers who do not have full background knowledge about the design

effort.
1One of the authors served as the designer for this evaluation.
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Communication Rationale is interpreted as the passive recording of design discourse as it occurs.

Rationale stores the information needed to answer questions about what was done, and why,

possibly for recall during the design process itself or for subsequent decision-making.

A rationale acquisition system can adopt more than one of these perspectives. The work de-

scribed in this paper focuses on rationale as documentation and communication. Specifically, in

recording the design process we wish to make explicit the relationship between design decisions

and design requirements, as well as the interactions among various assemblies and components in

the design. This information will be useful during the development of the initial design, providing

the means for a designer to keep track of options that have been explored and reasons for certain

modifications to the design. However, we envision that the extracted rationale will be of even

greater value later in the life cycle of a design. We envision many of the potential users of RCF

to be designers who have taken over a previous design for maintenance or reuse. For them, it is

critical to be able to quickly develop an understanding of a design, including the key assumptions

and tradeoffs that it embodies, to ensure that modifications are consonant with the intent of the

original designer.

1.4 Overview of Paper

Section 2 describes the architecture for RCF, presenting overviews of the main components of

the system. Section 3 summarizes the robotic arm design case used throughout to illustrate the

workings of RCF. Section 4 presents an overview of our approach to rationale extraction, which is

subsequently expanded in Sections 5 through 8. Section 9 describes mechanisms for accessing the

extracted rationale. Section 10 discusses evaluation of the approach taken and future directions,

while Section 11 describes related work. Section 12 presents our conclusions.

2 RCF Architecture

As depicted in Figure 1, RCF contains three main components: an enhanced CAD tool, the Moni-

toring module, and the Rationale Generation module (RGM).

Within RCF, the designer interacts with the CAD tool as if it were a stand-alone application.

The operations that he or she performs, however, are tracked by the Monitoring module, which

forwards relevant information about observed designer events in real time to the RGM. From this

stream of events, the RGM constructs a design event log that provides a comprehensive history of
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Figure 1: RCF Architecture

operations performed by the designer during the course of a design session. Based on the incoming

events, RGM also constructs a symbolic design model that provides a qualitative description of the

emerging design. The rationale construction methods exploit these two components to construct

rationale, using design metaphors and background information about design requirements.

2.1 CAD Tool

Several criteria drove the selection of a CAD system upon which to build RCF. One criterion

was the inclusion of sophisticated modeling capabilities that would provide a rich set of design

operations suitable for demanding electromechanical design tasks. A second criterion was that the

system employ a design substrate of sufficiently high level (Fischer and Lemke, 1988; Hutchins

et al., 1986). Third, extensibility of the system would be critical for enabling both the insertion

of monitoring hooks and the definition of additional CAD operations. After an extensive survey

of available commercial and research systems, Bentley’s MicroStation95 (Bentley Systems, Inc.,

1995) was selected as the system that best satisfied our needs.2

To support rationale acquisition within RCF, the set of operations provided by MicroStation95

was extended to include several capabilities that raised the overall semantic content of its design

substrate. One class of added operations, annotations, enables users to specify the semantic type

of an object along with associated type-specific semantic attributes. The semantic type of an

object refers to the intended semantic interpretation of the object with respect to the particular

2While the RCF rests on top of a particular tool, its underlying models apply more generally to a wide range of
CAD tools.
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design domain, in contrast to the structural and geometric description of the object. For example,

the designer may declare that a given solid represents a gear, as well as specifying gear-specific

attributes such as number of teeth, gear ratio, or quality. Such semantic information, which RCF

uses extensively, is provided as a by-product of parametric design methods and part selection

capabilities found in numerous state-of-the-art CAD systems. We also augmented MicroStation95

with a set of analysis programs that can be linked directly to components in the CAD model, thus

extending the limited analysis capabilities within the core system. This modification reflects a

growing trend toward building design environments that integrate a range of design tools. Finally,

we added an ability to select components from predefined part libraries, which is standard in many

current CAD frameworks.

2.2 Monitoring Module

The monitoring facility within RCF nonintrusively tracks designer operations within MicroSta-

tion95, generating a stream of tool events that are sent in real time to the RGM. Tool events

are a system-dependent representation of the activity of a designer. The tool events extracted

by the monitoring facility within MicroStation95 include the creation, deletion, and modification

of points, two-dimensional profiles, parametric solids, free-form solids, boolean combinations of

solids, and features on solid objects (including holes, bosses, protrusions, ribs, and cuts). Manipu-

lation operations (e.g., move, copy, rotate) are supported, as is the direct assignment of attributes.

Creation and deletion of joints are possible, leading to the connection of parts in pairwise fashion

into assemblies. The creation and importing of parts are supported, as is the invocation of built-in

analysis programs. Finally, process-level commands such as the undoing and redoing of operations

are also tracked. Overall, the set of monitored commands is adequate for a wide range of complex

design tasks.

Certain aspects of the design process are explicitly ignored by the monitoring process. Ex-

amples include certain geometric information associated with the manipulation and definition of

objects (e.g., spatial positioning), and design commands not immediately relevant to rationale (such

as viewing commands).

The monitoring process considers only fully prosecuted commands. Thus, intermediate changes

made within the middle of specifying an operation are ignored. For example, an operation to con-

nect two components with a specified type of joint requires selection of two objects and an ap-

propriate joint type. For such multistep operations, a user may change the selected parameters for
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the operation before committing to a version of the command that should be executed. The RCF

monitoring process tracks only the executed command.

2.3 Rationale Generation Module

The Rationale Generation Module (RGM), the main inferential component of the framework, per-

forms the automated generation of rationale structures. The RGM incrementally constructs an

abstract representation of observed CAD tool operations, called the design event log, which pro-

vides a tool-independent characterization of key design operations.

Based on the design event log, the RGM constructs a symbolic model of the emerging design in

incremental fashion. This model contains the core elements of the design, along with key relation-

ships among them (e.g., part/subpart relationships, interpart constraints). Individual components

are tagged with annotations that are relevant to rationale, such as timestamps, revision histories,

and reuse information. The symbolic model of the design contains limited geometry information,

restricted mostly to dimensional information for created objects.

The design event log and symbolic design model provide the evolving information base from

which rationale information is generated, in conjunction with a formal specification of the require-

ments for the design task and a set of design metaphors. As described further in Section 4.2, design

metaphors characterize sets of operations that constitute meaningful episodes of designer activity.

As such, they provide the basis for inferring designer intent from designer actions.

2.3.1 Event Models

The operations supported within the design event model, while not exhaustive, were chosen for

their adequacy with respect to an interesting set of design tasks. Two high-level categories of

operations are distinguished within the system. Base-level operations (Table 1) support the direct

creation, modification, and manipulation of objects. Process-level operations (Table 2) do not oper-

ate directly on design objects. Instead, they either manipulate information and metalevel structures

related to the design (such as files), or impact the interpretation for previously executed operations

(e.g., Undo/Redo operations). Tracking the impact of process-level operations requires complex

bookkeeping within RCF of current and previous states, to maintain an accurate characterization

of the current design within the symbolic design model.

There are several possible semantic models for interpreting Undo/Redo operations. Our model

(as dictated by the operational semantics of MicroStation95) limits the set of operations that are
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Create define a new object from scratch
Copy define a new object by reference to a previously defined object
Delete delete a previously created object
Modify change structural aspect of a design object
Manipulate reorient an object in space
Connect create a joint between two objects
Import read in a predefined part
Annotate set/reset the semantic attributes of a design object
Analyze invoke an evaluation tool for analyzing some aspect of the design

Table 1: Base-level Design Events

Undo undo the previous ‘undoable’ operation
Redo redo the last undone operation
File-Open create or read-in a design file
File-Copy copy a design file
File-Save save a design file

Table 2: Process-level Design Events

‘undoable’. In particular, only the base-level operations Create, Copy, Delete, Modify, Manipu-

late, and Annotate can be undone, and only Undo events can be Redone. A given Undo or Redo

operation impacts the most recent operation for which the Undo or Redo is applicable that has not

already been undone or redone.

Many tool events have direct correspondents in the design event model (e.g., Create-Slab tool

events map to a Create operation for objects of type Slab). However, certain design events cor-

respond to a set of tool events (e.g., joint creation consists of an origin definition followed by a

joint declaration). At present, there are no 1:n mappings within the framework, although macro

definitions would require such a capability.

Several properties are maintained for each design event. The type property stores one of the

base- or process-level event categories described above. The tool events property indicates the

monitored operations that formed the basis for the given design event. The status property tracks

whether the event is :alive or :inactive, relative to Undo/Redo operations. The status for an event

starts out :alive, but will switch to :inactive should the event be ‘undone’ at some later stage. The

status will be reset to :active should the undone event subsequently be redone. The role of the

focus object property varies with the type of the design event. For example, with a Create event,

the focus object corresponds to the created object; for a Delete event, the focus object corresponds
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Construction Create, Copy, Import, Part, Connect
Revision Undo, Redo, Delete, Modify, Manipulate,

Create (that have been undone but not redone),
Annotate (that change rather than initiate values)

Deletion Delete, Undo
Assembly Connect

Table 3: Design Event Supertypes

to the deleted object. The impact property stores rationale-related information for this event.

Additional type-specific properties are stored with design events. For example, an Analysis

event includes information about objects used for the analysis and their attributes, the analysis

program invoked, and the results of the analysis. An Annotate event stores information about

the attributes that are being modified, along with their newly assigned values. A Copy operation

records the source object that was copied and the newly created object.

2.3.2 Design Event Supertypes

Design event types distinguish design operations with significant differences in their operational

impact. Certain of the rationale generation techniques described later (Section 6.2) employ more

abstract categorizations of designer activity, organized around the set of design event supertypes in

Table 3.

2.3.3 Symbolic Design Model

The symbolic design model provides an abstracted representation of the emerging design that

supports the reasoning required by the rationale construction process. It consists of representations

for key elements within the design and relationships among them. It excludes certain information

stored within the CAD model of the design (in particular, geometric information plays only a

limited role), but augments the CAD representation to include relevant process information for

objects within the design.

The representations employed support a rich set of design elements, spanning solid objects,

features (structural attributes of an object, usually corresponding to a machining operation), two-

dimensional elements used in the drafting process, and points. (Linear elements and points in and

of themselves are not part of a design; rather, they are building blocks used to construct objects

within the model.) Components can be defined in terms of other components and features; nested
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features are also supported.

Several categories of information are stored for a given design object. First, there is the standard

definitional information: the object’s geometric category (i.e., sphere, slab, line) and key structural

attributes (i.e., the diameter for a sphere). In addition, the semantic category and category-specific

semantic attributes are stored. Semantic attributes encapsulate properties related to the intended

semantics of the object. The semantic attributes are determined by the semantic category of the

object. For example, an object in the semantic category gear could have semantic attributes such

as number-of-teeth, ratio, or width.3 The specification of attributes can provide much insight into

the evolution of a design. For this reason, the RCF system keeps a record of the evolving values

for each attribute (both structural and semantic) that enables retrieval of values for any stage of the

design process.

Several interobject relationships are stored for use in reasoning about rationale, including par-

ent/child relationships that reflect hierarchical structuring of complex objects, copies/source re-

lationships, and attachment relationships indicating connection of two design objects through a

joint of a designated type. We define an assembly to be the closure of a set of objects under the

attachment relationship (i.e., under joint connectivity).

On the process side, several additional forms of information are stored, including a record of all

operations performed on the object, analyses related to the object, time devoted to that object, the

origins of the object (i.e., selected from a part library, copied from a user, created by a designer),

and status information (:alive or :inactive). In addition, a link connects each object back to the

corresponding tool object in the CAD model.

3 Case Study: Surgical Robotic Arm

Arm-Inertia-Ix � 5 lb-in2 Working Envelope within 12 in
Arm-Inertia-Iz � 50 lb-in2 Mass � 2 lb.
Inertia (unbalanced) � 1 lb-in2 Pitch Servo Resonance � 35 Hz
Precision (unloaded) � 0.004 in Pitch Cable Resonance � 70 Hz
Precision (loaded) � 0.01 in Arm Mechanical Resonance � 70 Hz
Tool Friction � 0.75 lb-in Tool Torque � 16 lb-in
Max. Stress to Yield Stress � 0.4

Table 4: Requirements for the Robotic Arm Design Case

3As described in Section 2.1, enhancements to the underlying CAD system support the explicit assignment of a
semantic category and corresponding semantic attributes. A more advanced CAD system would provide such capabil-
ities through the selection of semantically grounded components from predefined component libraries.

13



Figure 2: CAD Model for the Surgical Robot Arm

RCF was evaluated in a case study involving the design of a three-degree-of-freedom surgical

robotic arm. The main technical challenges for this design were to provide sufficient actuation

torque, while maintaining low inertia and high precision. Table 4 provides detailed information

about the design requirements for this case.

RCF recorded designer activity over several versions of the arm, starting from a rough initial

design, through various stages of refinements and optimizations. The designer divided the design

into three main subassemblies: the base assembly, including the motors, the arm assembly, includ-

ing the transmission, and the wrist assembly, including the end effector and tool. Figure 2 shows

the resultant CAD model. From the recorded events, RCF was able to summarize designer activity

at varying levels of abstraction, to identify phases where the designer concentrated on various parts

or subassemblies or where design parameters where tuned, to track the results of design tradeoffs,

and to explain key design changes. Examples from this case study will be used throughout the

remainder of the paper to illustrate the workings of RCF.
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4 Rationale Extraction: Overview of Technical Approach

We interpret design rationale broadly to include any aspect of a design session that could further

understanding of the resultant design and the process by which it was developed. RCF provides

two categories of rationale information: session content and designer intent. Session content fo-

cuses on summaries and abstracted views of the design process, organized from several different

perspectives. These perspectives support different approaches to comprehending the design, each

suited to a different set of needs. Rationale related to designer intent provides explanations for

key design changes. Rationale extraction is organized around a set of domain-independent de-

sign metaphors (Section 4.2) augmented by limited amounts of task- and domain-specific design

knowledge (Section 4.3).

4.1 Rationale Categories

4.1.1 Session Content

Comprehension of the evolution of a design requires records of both complete histories of designer

activities and snapshots of the current and past states. Toward this end, session content focuses on

characterizations at multiple abstraction levels of events and objects for a given design session. At

the lowest level, complete and detailed descriptions of all design events and objects are provided.

Above that, a variety of views at higher levels of abstraction aggregate events and design objects

into related units. These abstracted summaries provide broad overviews of the design and its

evolution.

RCF provides summaries of a design session from three different perspectives. The effort-

centered perspective summarizes where and how a designer spent his or her time (Section 5). The

event-centered perspective summarizes the design session at multiple abstraction levels, using a

combination of design metaphors and clustering methods to perform the abstractions (Section 6).

The object-centered perspective provides historical and explanatory information for individual de-

sign objects and groups of objects that may be explicit in the design (e.g., assemblies) or inferred

to be related by RCF (Section 7).

4.1.2 Design Intent

A finished CAD model shows the end product of a designer’s efforts but omits the changes that

were made in the development of the design. Changes provide insight into the evolution of the

design, showing alternative paths that the user explored and basic strategies used to produce the
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final results. For this reason, a key focus within RCF has been to identify and explain changes to a

design, with emphasis on the following capabilities:

� Explain the motivations for changes in the design.

� Aggregate operations with a common purpose into coherent sets.

� Summarize considered options with possible explanations for their acceptance or rejection.

In the terminology of (Gero, 1990), we focus on the evaluation and reformulation of the design:

the designer compares the desired behavior of the ideal artifact with the actual behavior of the

proposed structure. Where the comparison is unsatisfactory, the designer attempts to modify the

structure accordingly. We assume that the desired behavior can be expressed as a set of design

requirements, and that the analyses used to perform the evaluation are available for inspection by

RCF.

We have explored an approach that involves situating changes within contexts defined by clus-

tering related events, and reasoning with domain knowledge about qualitative effects of design

operations. This work is described in Section 8.

4.2 Design Metaphors

Design metaphors are multistep patterns of events (not necessarily contiguous) that describe episodes

of coherent designer activity. They can be applied at varying scales of resolution: at the design

event level, or over groupings or abstractions of design events. RCF contains a suite of design

metaphors whose recognition enables generation of defeasible explanations of a range of designer

activity. Two example metaphors are presented here.

� The Refinement metaphor consists of a cycle of Analyze X - Revise behavior, indicating

that the designer is focusing on a particular design requirement X. It is reasonable to infer

that intervening modifications to the design are performed with the goal of addressing X,

although not all such revisions will have been performed with X in mind. Thus, while the

metaphor does not definitively link action and intent, it provides a plausible explanation for

the designer’s actions.

� The 1:1 Part Substitution metaphor captures the notion that the designer has swapped one

functional component for another. In particular, Part B is considered to be substituted for
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Part A when it is observed that first, Part A is removed, and then some Part B from the

same functional category is added to the assembly with the same connectivity as Part A.

These part operations must occur within a certain window of activity – namely, an interval

of operations that the system has identified as being related (see Section 6.3) – but need not

be consecutive.4

The Refinement and 1:1 Part Substitution metaphors capture general design principles and as

such are applicable to a broad range of design tasks. To date, all design metaphors within RCF

share this domain-independence. Task-specific design metaphors could readily be added to the

system to increase explanatory power, although at the cost of the knowledge engineering involved.

As an example, consider the choice of a power regulator for a control system. Suppose that the

designer chooses a DC-DC converter to step down from a 12V power supply to the required 5V

control supply, rather than a shunt regulator, the standard alternative. DC-DC converters are, in

general, more expensive and less reliable, but more efficient than shunt regulators. So, in the

context of supplying power to a circuit, it is reasonable to infer that the choice of DC-DC converters

indicates that power efficiency was a primary goal of the designer. Here, a fairly strong inference

can be made. In general, task-specific metaphors support correspondingly deeper explanations of

designer actions; however, that increased detail comes at the cost of the knowledge engineering

required to encode metaphors for the given domain.

4.3 Domain Knowledge

The use of background knowledge can greatly extend the rationale extraction capabilities. How-

ever, such knowledge can be difficult and expensive to acquire and represent. For this reason, we

explored a range of techniques that vary in the amount of background knowledge that they employ.

RCF employs two kinds of optional background knowledge, which are used primarily to support

explanation of certain forms of designer activity (as described in Section 8).

� Overall design requirements are represented as a collection of properties, possibly with

threshold constraints that must be satisfied (e.g., Arm-Inertia-Iz � 50 lb-in2). Nonmeasur-

able requirements, such as Durability, do not include explicit thresholds. Design require-

ments are used within RCF to provide possible motivations for designer activities.

4Additional substitution metaphors could be defined that capture, for example, one-to-many and many-to-one
substitutions.
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� Qualitative models of the effects of design operations provide linkage from observed activ-

ities to their impact on key design properties. Within RCF, these models enable casually

grounded explanations of designer activity.

5 Effort Allocation

The manner in which a designer allocates his or her efforts can provide valuable insight into the

design. Time spent, level of detail, and the number of alternatives explored can all indicate what

the designer thinks is important or what has proven to be difficult within a given design task.

RCF tracks effort with respect to operation allocation and time allocation. Operation allocation

is measured in terms of number of design events. Time allocation is measured in terms of clock

time devoted to design events. In particular, tool events are tagged with normalized timestamps to

provide a basis for our temporal allocation model. The duration between timestamps is ‘wall-clock’

time, including both the time required to perform the operation, and inactive time (i.e., between

tool operations). A normalization process eliminates large time gaps between tool commands,

which are assumed to correspond to designer idle time; tool events that occur after such gaps are

assigned a default duration to generate the next timestamp. The time for a design event is defined

to be the difference between the normalized timestamps for the corresponding tool event and the

tool event for the previous design event.

Time and operation allocation can be reported relative to a given design object or a class of

design objects. In addition, time allocation can be obtained for a given design event or a class of

design events. Relative distributions across design event types and objects are also supported.

These effort allocation models have certain drawbacks. Characterizing operational effort in

terms of number of design events ignores the relative significance of different kinds of operations.

For example, an operation that reads in a previously defined complex part would contribute only a

single increase to the operation tally, while recreation of the part by hand could require a substantial

number of operations. In certain situations, a weighted model for operations might be appropriate;

however, effort measured in terms of operation count still provides insight into where the designer

focused his or her effort.

Issues arise as well with the model for time allocation. A ‘credit assignment’ problem arises

in determining time allocation in that several preparatory operations may be required for a given

creation operation. For example, consider the creation of a linear profile with a complex shape that

is to be used (with minor modifications) as the basis for a number of free-form solids. Ideally, time
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allocated to the creation of the profile should be distributed over all shapes built with that profile.

The complexity of the problem increases once modifications and revisions are taken into account.

Despite the crudeness of the underlying models, effort allocation information can provide use-

ful insights into understanding a design. For instance, when faced with the task of modifying

a design, knowledge that the original designer spent a significant amount of effort on a specific

component should alert the downstream designer that subtle design issues may be at hand. Al-

ternatively, information that a component received little attention could indicate either that the

component is relatively unconstrained (and hence was easy to design), or that the designer simply

lacked sufficient time to refine it.

6 The Event-centered Perspective

The event-centered perspective provides summaries of a design session at varying levels of abstrac-

tion. To support these different views, RCF first partitions the design event log into versions of

artifacts (Section 6.1). Within a given version, RCF then aggregates designer activity into higher-

level abstractions. Individual design events are grouped into part-level operations (Section 6.2),

which focus on design objects at the level of parts in an assembly. Next, part-level operations are

grouped into activity phases (Section 6.3), which correspond to broader collections of activities

with a common design objective.

6.1 Versions

Versioning relies on the observation of coherent sets of operations within a design file. Within

RCF currently, the metaphor Create/Copy File - Activity - Save File defines version boundaries;

(Qureshi et al., 1997) employs a similar convention. Clearly, more general metaphors are possible

(as discussed further in Section 10).

Within a version, the system tracks the different activity phases of the designer, the subsystems

of the design worked on the most, the design requirements that were addressed, and significant

structural and attribute changes. Figure 3 summarizes designer activity for one version (Version 2)

of our design case study. (More detailed information about the activity phases within this summary

is provided in Section 6.3.) Figure 4 summarizes the changes between Versions 1 and 2 of this same

design.
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****************** Version 2 **********************

From event 218 to 374

>>>>>>>>>>>>>>>>> Activity Phase 0 <<<<<<<<<<<<<<<<
Activity type: CONSTRUCTION

Primary focus on (ARM3 ARM)

>>>>>>>>>>>>>>>>> Activity Phase 1 <<<<<<<<<<<<<<<<
Activity type: REVISION

In the BEGINNING, no detected focus
In the MIDDLE, MILD focus on (WRIST)
In the END, STRONG focus on (BASE)

>>>>>>>>>>>>>>>>> Activity Phase 2 <<<<<<<<<<<<<<<<
Activity type: REFINEMENT

In the BEGINNING, focus on (ARM-INERTIA-IZ WEIGHT)
Refinement of ARM-INERTIA-IZ:

(60.0 50.0) --> REDUCE
Modifications primarily on
DOBJ92 ( BASE_GEAR ) from assembly BASE
DOBJ207 ( BV_1250 ) from assembly WRIST

Refinement of WEIGHT:
(2.2 2.0) --> REDUCE

Modifications primarily on
DOBJ92 ( BASE_GEAR ) from assembly BASE
DOBJ207 ( BV_1250 ) from assembly WRIST

In the END, focus on (STRESS)
Refinement of STRESS:

(0.6 0.4) --> REDUCE
Modifications primarily on
DOBJ31 ( BV_0625 ) from assembly WRIST
DOBJ207 ( BV_1250 ) from assembly WRIST

>>>>>>>>>>>>>>>>> Activity Phase 3 <<<<<<<<<<<<<<<<
Activity type: CONSTRUCTION

In the BEGINNING, STRONG focus on (GROUP4 BEAR_BR)
In the MIDDLE, STRONG focus on (GROUP4 BEAR_BR)
In the END, MILD focus on (GROUP4)

>>>>>>>>>>>>>>>>> Activity Phase 4 <<<<<<<<<<<<<<<<
Activity type: ANALYSIS

From event 371 to event 374
Analyses performed:
Analysis PRECISION-LOADED, with outcome 0.1; design requirement UNSAT
Analysis PRECISION-UNLOADED, with outcome 0.018; design requirement UNSAT
Analysis SERVO-RES, with outcome 50.0; design requirement UNSAT
Analysis FRICTION, with outcome 2.0; design requirement UNSAT

Figure 3: Summary of Activity within a Single Version of an Artifact
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>>> Summary of Part Changes between Version 1 and Version 2 <<<

Deletions:
Part GR_16_1 : all instances deleted
Part GR_08 : all instances deleted
Part BV_1875 : all instances deleted
Part BASE_PULLEY1 : all instances deleted

Additions:
Part ARM4 was added
Part BASE_PULLEY_3 was added
Part BEAR_BR was added
Part BELT was added
Part BRNG_W_S3 was added
Part BV_1250 was added
Part GEAR_16_3 was added
Part GR_08_4 was added
Part TOOL_BRNG was added

Modifications:
Part BASE_GEAR was modified

Figure 4: Summary of Part Changes between Two Versions of a Design

6.2 Part-level Operations

Part-level operations aggregate individual design events into higher-level units that focus on de-

sign objects at the level of parts in the assembly. Thus, rather than examining activity on the level

of features or components being modified or joined, a part-level chronology consists of parts be-

ing created, added or removed from the assembly, substituted for other parts, or modified. The

part-level view of the design process is both more understandable to human observers and more

convenient for recognizing abstract design metaphors.

Part operations, shown in Table 5, are characterized in terms of the event supertypes displayed

in Table 3. By necessity, the part-level models within RCF are somewhat implementation-specific

to MicroStation95.

Figure 5 shows an example part-level abstraction produced by RCF. The excerpt from the

design event log (on the left) constitutes a period of revision activity, in which the designer replaces

selected components in the design. Within MicroStation95, a joint connects two design objects at

a contact point; disconnecting a component from an assembly generally requires a series of joint

deletions. RCF maps a joint back to the components that the joint connects, and thus keeps track of

parts being switched in and out of the design. The part-level description on the right abstracts the

explicit joint manipulations into a summary of the parts being removed, added, or replaced. Each

object within RCF has a unique design object id, for example, DOBJ167. Reference to a design

object corresponding to an instance of a part generally includes the name of the original part from
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Part Creation A series of construction and revision events on a set of related design objects,
culminating in a part-declaration command, defining a representative component
of this set of objects as a part.

Part Addition Assembly and construction events for objects that are parts, design objects de-
rived from parts, or joints between parts. Operations on features and subcompo-
nents are explicitly excluded, corresponding instead to part modification events
on the parent component of the feature.

Part Removal Events that delete a part or all joints that link the part to other parts within an
assembly.

Part Modification Part-level revision events and feature-level creation or revision events on children
of a part component.

Part Substitution Defined by the 1:1 Part Substitution metaphor (described in Section 4.2).

Table 5: Example Part Operations

Devent 263: DELETE JOINT90
Devent 264: DELETE JOINT91
Devent 265: CONNECT JOINT92
Devent 266: CONNECT JOINT93
Devent 267: DELETE JOINT65
Devent 268: DELETE JOINT66
Devent 269: CONNECT JOINT94
Devent 270: CONNECT JOINT95
Devent 271: DELETE JOINT86
Devent 272: DELETE JOINT87
Devent 273: CONNECT JOINT96
Devent 274: CONNECT JOINT97
Devent 275: DELETE JOINT80
Devent 276: CONNECT JOINT98
Devent 277: DELETE JOINT81
Devent 279: UNDO
Devent 280: DELETE JOINT82

From design event 263 to design event 280
Assemblies involved:

MAIN-ASSEMBLY
WRIST
ARM

Parts added:
DOBJ229 (GEAR_16_3) from assembly WRIST
DOBJ228 (GEAR_16_3) from assembly WRIST

Parts removed:
DOBJ183 (GR_08) from assembly WRIST

Part substitutions:
DOBJ167 (BV_1875) was replaced by DOBJ227 (BV_1250)
DOBJ168 (BV_1875) was replaced by DOBJ226 (BV_1250)
DOBJ212 (ARM3) was replaced by DOBJ225 (ARM4)
DOBJ213 (ARM3) was replaced by DOBJ224 (ARM4)

Figure 5: Abstracting from Design Events to Part-level Operations

which it was created. Thus, DOBJ212 and DOBJ213 are both instances of the previously created

part ARM3.

6.3 Activity Phases

Activity phases are groupings of events that describe the designer activity at the level of abstract

operations on components, parts, or the design artifact itself. Four types of activity phases are

extracted from the sequence of part operations; these types are summarized in Table 6. Analysis

and part-level statistics are kept for each type.

During a given activity phase, a designer will often focus on a specific part or set of parts
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Construction a period of interleaved part creation and part addition events
Revision a period of interleaved part revision, part addition, part deletion, and/or part sub-

stitution
Analysis a period of analysis events not linked to any revisions.
Refinement a period of analysis events and related revision events

Table 6: Types of Activity Phases

>>>>>>>>>>>>>>>>> Activity Phase 1 <<<<<<<<<<<<<<<<
Activity type: REVISION

In the BEGINNING, no detected focus
In the MIDDLE, MILD focus on (WRIST)
In the END, STRONG focus on (BASE)

>>>>>>>>>>>>>>>>> Activity Phase 2 <<<<<<<<<<<<<<<<
Activity type: REFINEMENT

In the BEGINNING, focus on (ARM-INERTIA-IZ WEIGHT)
Refinement of ARM-INERTIA-IZ:

(60.0 50.0) --> REDUCE
Modifications primarily on
DOBJ92 ( BASE_GEAR ) from assembly BASE
DOBJ207 ( BV_1250 ) from assembly WRIST

Refinement of WEIGHT:
(2.2 2.0) --> REDUCE

Modifications primarily on
DOBJ92 ( BASE_GEAR ) from assembly BASE
DOBJ207 ( BV_1250 ) from assembly WRIST

In the END, focus on (STRESS)
Refinement of STRESS:

(0.6 0.4) --> REDUCE
Modifications primarily on
DOBJ31 ( BV_0625 ) from assembly WRIST
DOBJ207 ( BV_1250 ) from assembly WRIST

>>>>>>>>>>>>>>>>> Activity Phase 3 <<<<<<<<<<<<<<<<
Activity type: CONSTRUCTION

In the BEGINNING, STRONG focus on (GROUP4 BEAR_BR)
In the MIDDLE, STRONG focus on (GROUP4 BEAR_BR)
In the END, MILD focus on (GROUP4)

Figure 6: Example Activity Phases
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for some time before switching attention to another aspect of the design. Using the effort allo-

cation models described in Section 5, RCF identifies the evolving focus of designer attention, at

the level of design requirements being addressed, individual parts, subassemblies of parts, and im-

plicit groups of parts that are identified automatically during the extraction of activity phases (see

Section 7.2).

The focus during an interval of activity is defined as a part, a grouping of parts, or a design

requirement, for which the percentage of effort devoted to it exceeds some threshold. It is possible

for a period of activity to have no detected focus. The effort metric used to determine attention

focus can be either number of operations or accumulated time per part. For simplicity, RCF simply

subdivides an activity phase into three equal subintervals (BEGINNING,MIDDLE, and END). More

generally, the number and length of subintervals could be computed dynamically by applying

clustering techniques to define focus areas.

Figure 6 shows example revision and construction types of activity phases and the detected foci

within each. In Activity Phase 3, note the focus on an implicit group of parts, group4, a set of

bearings. The parts in group4 are not explicitly linked in the design, nor are they even members of

the same subassembly; they were grouped because activity on any one part in the group correlated

strongly with activity on other parts in the group. Section 7.2 discusses the methods used to identify

such implicit groups.

7 The Object-centered Perspective

The object-centered perspective provides information about the design process with respect to a

particular design object, or set of objects. Two types of object-centered information are produced

by RCF. Explicit object histories are maintained for individual and aggregated objects. In addition,

RCF looks for interesting relationships among parts or between a part and design requirements,

based on designer activity.

7.1 Object Histories

For each design object, RCF maintains a detailed history that includes the object’s origins (how

and when created), related design events, connections to other objects, and effort expended for that

object. Additional information is kept for parts: related part-level operations, a detailed part his-

tory, and pedigree information. Pedigree information refers to the heritage of a part. For example,

a part can be selected from a library or a catalog, it can be created from scratch, or it can be a
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---------- Part History: ARM4 ----------

--- Source ---
Design object DOBJ214
is Part ARM4 of type ARM
from file c:/models/version1/arm4.dgn
and is originally derived from part ARM3

--- Part Activity ---
In Version 2, Activity Phase 1, type REVISION:
>> added to assembly as replacement for ARM3

---------- Version Info: Part ARM4 ----------

Part ARM4 was originally copied from Part ARM3

Part ARM3 was originally copied from Part ARM2
WIDTH changed from 0.0 in ARM2 to 1.6 in ARM3
HEIGHT changed from 1.6 in ARM2 to 0.0 in ARM3

Part ARM2 was originally copied from Part ARM1
WIDTH changed from 2.25 in ARM1 to 0.0 in ARM2
HEIGHT changed from 2.5 in ARM1 to 1.6 in ARM2

---------- Part History: BV_1250 ----------

--- Source ---
Design object DOBJ207
is standard part BV_1250 of type GEAR
from file c:/models/version1/std_1250.dgn

--- Constraints ---
BV_1250 (GEAR), attributes (MATERIAL)

constrains
BV_0625 (GEAR), attributes (MATERIAL)

--- Part Activity ---
In version 2, activity phase 1, type REVISION:
>> Added to assembly as replacement for BV_1875

In version 2, activity phase 2, type REFINEMENT:
>> Modified

Event 305: ANNOTATE CAT_NUM ==> BERG_M48N2A;
--> Possible Effects: (ARM-INERTIA-IZ DOWN)

(WEIGHT DOWN)

>> Modified
Event 313: ANNOTATE CAT_NUM ==> BERG_M48N2A;

MATERIAL ==> SS;
--> Possible Effects: (WEIGHT UP)

(STRESS DOWN)

Figure 7: Example Part Histories and Part Version Summaries

copied from another part. A part can have several versions: for example, if PartB is created by

making a copy of PartA, and then modifying it, then PartA is considered to be a previous version

of PartB.

A part’s history includes when it was introduced into the assembly, if and when it was removed,

whether it was replaced by another part (i.e., instances of the 1:1 Substitution metaphor), and

modifications to the part or any of its attributes. The context of these operations is reported:

which version and what type of activity phase. Also recorded are hypothesized explanations for

activities related to the part (see Section 8), detected relationships between a part and any design

requirements, and inferred dependencies on other parts through membership in implicit groups.

Figure 7 shows the part histories for parts ARM4 and BV 1250. ARM4 was copied from ARM3,

and then replaced it in the assembly. ARM3 was copied from ARM2, and then modified. The

modifications made at the time of the part copy are recorded and shown. BV 1250 was added

to the assembly as the replacement for another part. Furthermore, RCF hypothesized an implicit

constraint between the material attributes of BV 1250 and BV 0625.
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Insertion Group Parts that are consistently added together to the assembly during the same period
of construction activity (not necessarily in the same order).
(Metaphor: Insert A0 ... Insert An (repeated))

Modification Group Parts that are consistently modified together during the same period of part revision
(not necessarily in the same order).
(Metaphor: Modify A0 ... Modify An (repeated)).

Functional Group Parts that are consistently refined together within a single refinement phase, in
connection with the same design requirement.
(Metaphor: Analyze X - Modify A0 ... Modify An - Analyze X (repeated)).

Table 7: Example Implicit Groups

>>>>>>>>> Implicit Groups <<<<<<<<<<
Group INSGP0 of type INSERTION: parts MOTOR TOOL TOOL_BCK1
Group INSGP1 of type INSERTION: parts PINIONN PINION
Group INSGP2 of type INSERTION: parts GEAR_16_3 BV_1250 ARM4
Group INSGP3 of type INSERTION: parts GR_08_4 GR_08_3
Group INSGP4 of type INSERTION: parts TOOL_BRNG BRNG_W_S3 BEAR_BR
Group INSGP5 of type INSERTION: parts B_SPOOL_1 W_SPOOL_1 CABLE
Group MODGP6 of type MODIFICATION: parts WIST_PULLEY_1 WRIST_SHAFT
Group MODGP7 of type MODIFICATION: parts PINION PULLEY1_B
Group MODGP8 of type MODIFICATION: parts GR_16 GR_08 ARM2
Group MODGP9 of type MODIFICATION: parts BASE_PULLEY_3 GEAR_16_3 GR_08_3 GEAR_08_V3 ARM3
Group MODGP10 of type MODIFICATION: parts BRNG_W_S3 BRNG_WRIST_S2 BEAR_W
Group MODGP11 of type MODIFICATION: parts CABLE B_SPOOL_1 W_SPOOL_1

Figure 8: Implicit Groups Detected during a Design Session

7.2 Object Abstractions: Implicit Groups

The aggregation of objects into logically related groups is a powerful mechanism for improving the

understandability of complex structures. Assemblies and hierarchies provide examples of groups

that a designer defines explicitly. In addition, ‘hidden’ relationships can be present in a design

that, if made apparent, could similarly improve understanding. For example, two parts (possibly

from different subassemblies) may be implicitly dependent on each other, either structurally or

functionally, in a way that would not be apparent from examination of the finished CAD model.

RCF searches for implicit groups of design objects that satisfy such hidden relationships. While

the system may or may not be able to identify precise constraints among the parts in an implicit

group, it can bring them to the attention of a designer, who may be able to identify a reason for such

a dependency. RCF contains design metaphors for recognizing several types of implicit groups,

which are listed in Table 7. Figure 8 summarizes several implicit groups detected during a portion

of the robotic arm design session.

The period of time over which one looks for these part activity patterns impacts the set of groups
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that are extracted. One could look for patterns conservatively, over the entire session. This strategy

would result in groups that are likely to be significant; on the other hand, other significant patterns,

which may exist only for a shorter interval of the session, will be missed. These groups would be

discovered by more localized search, over a single version of the design, for example. In this case,

however, one might extract spurious, coincidental patterns of activity. Currently, functional groups

are local to a single refinement phase, and are taken with reference to the associated analysis. Other

implicit groups are taken over the whole session.

8 Explaining Changes

The linking of activity with intent constitutes a key component of rationale. RCF reasons about

designer intent during refinement phases, using a set of methods that vary in the amount of back-

ground knowledge about the design task that they require.

The approach involves gathering evidence to support a range of hypotheses as to the designer’s

motivation for performing particular operations or groups of operations. The hypotheses postulate

that the designer intended to impact some design property (e.g., Torque), possibly to move in

some specified direction (e.g., increase or decrease). The evidence is based on three sources of

information: observed operations by the designer, design requirements, and information about

the impact that various changes could have on design requirements. As discussed further below,

the latter two types of evidence are not required, but enable richer explanations when provided.

A calculus for combining evidence provides inference of defeasible conclusions about designer

intent.

8.1 Clusters, Hypotheses, and Evidence

To provide a context in which to relativize explanations, related change events are grouped into

change clusters. Analysis events provide the basis for extracting change clusters, in accord with

the metaphor Analysis1... Analysisk – Event1 ... Eventj – Analysisk+1 ... Analysisn. The design

properties tested by the analyses within the cluster are adopted as hypotheses for explaining the

motivation for changes performed within the cluster. For example, during the development of

the robotic arm, the designer may conduct an analysis to determine the resonance of the arm,

perform some additional modifications, calculate the arm inertia, recalculate the resonance, and

then perform modifications to a different part of the design. In this case, the system would extract

a cluster that begins with the first resonance analysis and ends with the second resonance analysis.
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The hypotheses for this cluster would be that the designer is trying to impact resonance and inertia.

RCF collects evidence to strengthen or weaken these initial hypotheses. Table 8 displays the

types of evidence currently employed within the system. MATCHED-ANALYSES correspond to

the inclusion of a pair of analyses, one from the initial set of analyses and one from the final set,

that analyze the same design property. For example, the resonance analyses in the above example

satisfy this criterion. As opposed to observing analyses in isolation, matched analyses serve as

an indicator that (at least some of) the intervening operations were likely performed to impact

the design property that the analyses evaluate. Detection of a REFINEMENT-TREND, whereby

an analyzed design property changes monotonically within a cluster, would similarly increase the

likelihood that the cluster is focused on impacting that design property. MATCHED-ANALYSES

and REFINEMENT-TREND evidence are extractable directly from observed design events. The

remaining evidence types require additional background knowledge related to design requirements

and effects of design operations; they are discussed in Section 8.2.
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Type of Evidence Description Knowledge Requirements
MATCHED-ANALYSES The initial and final sets of analyses in the clus-

ter both include an analysis that evaluates the
design property.

None

REFINEMENT-TREND The cluster contains a monotonic trend (of
length greater than two) in the value of the de-
sign property.

None

PREVIOUSLY-COUNTERED Modifications were made in a preceding clus-
ter that moved the design property in the wrong
direction with respect to its associated design
requirements.

Design Requirements

KNOWN-SAT
KNOWN-UNSAT

Requirements for the design property are
known to be satisfied (unsatisfied) at the begin-
ning of the change cluster.

Design Requirements

MODIFY An event that could possibly impact this design
property occurred in the cluster.

Effects

MODIFY-WRONG-DIR
MODIFY-RIGHT-DIR

Modifications were made that moved the de-
sign property in the wrong (right) direction
with respect to its associated design require-
ments.

Design Requirements, Effects

Table 8: Types of Evidence to Support Hypotheses for Impacting a Design Property
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An evidence calculus provides the basis for combining collected evidence to produce final in-

terpretations. Hypotheses that score over a designated threshold are considered as intended effects;

as such, we do not assume that a designer has a single objective within a change cluster.

Different viewpoints or perspectives on the design process can be supported by assigning dif-

ferent levels of significance to various types of evidence. RCF distinguishes two categories of

evidence: cumulative and primary. Cumulative evidence simply increases or decreases the like-

lihood of a hypothesis in a straightforward manner. Primary evidence is deemed necessary for a

conclusion to be drawn, thus providing the means to filter irrelevant observations. This technique

allows the observer to specify the level of granularity that the system should use to draw con-

clusions. For example, the observer may want a coarse level of granularity, only considering the

designer’s intentions over an extended period of time. In this case, he or she may decide to desig-

nate REFINEMENT-TREND evidence as necessary in order for an effect to be considered possibly

intended. Conversely, if an observer wishes to examine the design process on a finer scale, con-

sidering all possible effects on an event-by-event basis, he or she may choose not to designate any

evidence as primary. RCF interpretations also support specifications of weights for emphasizing

different types of evidence.

Currently, RCF provides two interpretations. A fine-grain interpretation considers all ob-

served effects, with no primary evidence. A coarser context-emphasizing interpretation requires

MATCHED-ANALYSES evidence for an effect to be considered as intended. Both interpretations

combine cumulative evidence additively, although this need not be the case. In a probablistic

model, for example, evidence would be combined multiplicatively.

8.2 Background Knowledge

The evidence types described above are grounded in directly observable designer activity, and as

such can be applied to a wide range of design tasks. However, they have limited explanatory

power. Substantially more interesting explanations of designer intent can be generated through

the use of background knowledge. We consider two types: task-specific design requirements and

general-purpose domain knowledge about the effects of operations.

Design Requirements

When available, quantitative knowledge about task-specific thresholded design requirements (i.e.,

maximum or minimum thresholds) can be used to further weaken or strengthen belief in hypothe-
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ses. RCF employs five types of evidence related to design requirements. If a change occurs that

increases the degree of satisfaction of a design requirement that is already known to be satis-

fied, it is less likely (but not impossible) that the designer was intentionally focusing on that

design requirement (i.e., KNOWN-SAT from Table 8). Similarly, knowing that the requirement

is not satisfied would increase the likelihood that the designer was focusing on that requirement

(i.e., KNOWN-UNSAT). The evidence type PREVIOUSLY-COUNTERED indicates that modifica-

tions were made in one or more preceding clusters that moved the design property away from

the direction required to satisfy stated design requirements (e.g., as a side effect of addressing

some other requirement). This increases the likelihood that the designer would be attempting

to address this recently countered requirement. The evidence types MODIFY-RIGHT-DIR and

MODIFY-WRONG-DIR require information about design requirements but also of effects; for that

reason, they are discussed in the following section.

Effects of Changes: QIC Tables

Background knowledge of the possible effects of designer changes can similarly enable deeper

explanations of designer intent than is possible with observed designer activity alone. We have

developed an approach based on reasoning qualitatively about these possible effects. At the heart

of the method lies the specification of a table of qualitative impact of changes, which encodes the

effects that a given design change can have on designated design properties. This information can

also be used to assign intended effects to specific events and to identify side effects not manifested

by the analyses performed.

Figure 9 presents an excerpt from the qualitative impact of change (QIC) table for the robotic

arm design case. Here, the focus is limited to changes to semantic attributes. However, the ap-

proach can be readily extended to handle structural changes (e.g., the addition or deletion of ob-

jects) and magnitudes of changes. For a given change to a semantic attribute of an object, the

QIC documents design-related properties that are affected, along with a specification of how those

properties are impacted. As such, they can be viewed as possible explanations for performing

a given design change. Attributes have one of three types. Numeric attributes show positive or

negative correlation with design properties. Binary attributes show correlation when the attribute

assumes values of true or false. Enumerated attributes specify correlation for various ranking

functions.

QIC tables share with the confluences of (De Kleer and Brown, 1984) the goal of representing

the qualitative effects of change. Confluences are equations defined in terms of qualitative deriva-
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OBJECT CLASS ATTRIBUTE TYPE RANK Precision Precision Torque Inertia Friction Max Stress Cost Durability Resonance  Resonance Mass

Unloaded Loaded Avail Arm Mech. Servo

Gears Ratio NUMERIC +  +  + + +
Radius NUMERIC  +  + + + - +
Diametral Pitch NUMERIC +  + +
Quality NUMERIC +  - +
Width NUMERIC + + + - +
Ct-Ct Tolerance NUMERIC +  - +
Adjustable Ct-Ct Dist BINARY TRUE +  +
Material ENUM Lighter -  + -

Yield + + +
Stress + +

Figure 9: Excerpt from the QIC Table for the Robotic Arm Design Case

tives of variables whose values range over some limited domain (usually +, -, or 0). For example,

the confluence ∂P�∂A�∂Q � 0 describes the behavior of a valve with flow Q, flow area A, and

pressure P; here, ∂Q, ∂A, and ∂Q denote changes in Q, A, and P. While confluences can be used to

represent relations among a range of changes to a device, QIC tables define only pairwise interac-

tions between individual design changes and designated design properties. Within the scope of our

work, QIC tables were defined by hand. However, techniques for reasoning about causal effects,

such as propagation of disturbances among confluences (De Kleer and Brown, 1984) or causal

ordering and comparative statics (Iwasaki and Simon, 1986; Iwasaki and Simon, 1994), could be

used to derive QIC entries from formal descriptions of component behaviors.

Without QIC information, hypotheses are limited to the design properties tested by analyses

within the cluster. When QIC information is available, the set of hypotheses is expanded to in-

clude the effects of all actions performed within the cluster. QIC information also provides the

basis for two additional types of evidence. MODIFY evidence indicates that an action was per-

formed that could possibly impact the design property in question. MODIFY-RIGHT-DIR and

MODIFY-WRONG-DIR indicate that the designer made changes that moved the design property in

the right/wrong direction relative to the stated design requirements.

Figure 10 presents summaries of two example clusters extracted by RCF. Each summary in-

cludes (a) the key design events for the cluster (here, analyses and changes to semantic attributes of

objects), and (b) classification of effects of change operations within the cluster (extracted from the

QIC table) as intended or side effects. Evidence to support the classification is provided, along with

scores in the range ��5�5� determined by the application of the evidence calculus in use (here, the

context-emphasizing calculus). A positive score denotes ‘intended’ while a negative score denotes

‘unintended’, with larger absolute scores indicating greater belief in the hypothesis.

Within these clusters, the change events consist of modifications to the semantic attributes of
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>>> Cluster #1 <<<
Key Design Events:
#306: ANALYSIS of ARM-INERTIA-IZ with result 60.0
#308: ANALYSIS of WEIGHT with result 2.2
#310: ANNOTATE DOBJ209 (BV_1250)

CAT_NUM --> BERG_M48N2A;
#312: ANNOTATE DOBJ92 (BASE_GEAR)

CAT_NUM --> F32-A6-96;
MATERIAL --> DELRIN (was ALUMINUM);

#313: ANALYSIS of ARM-INERTIA-IZ with result 50.0
#314: ANALYSIS of WEIGHT with result 2.0

Intended Effects:
==> (WEIGHT DOWN) Likelihood = 2

Evidence:
(MATCHED-ANALYSES #308 #314)
(MODIFY #312)
(KNOWN-UNSAT #308)

==> (ARM-INERTIA-IZ DOWN) Likelihood = 1
Evidence:
(MATCHED-ANALYSES #306 #313)
(KNOWN-UNSAT #306)

Side Effects:
==> (STRESS UP) Likelihood = -1

Evidence:
(MODIFY-WRONG-DIR #312)

>>> Cluster #2 <<<
Key Design Events:
#316: ANALYSIS of STRESS with result 0.6
#318: ANNOTATE DOBJ209 (BV_1250)

CAT_NUM --> BERG_M48N2A;
MATERIAL --> SS (was ALUMINUM);

#321: ANNOTATE DOBJ31 (BV_0625)
CAT_NUM --> BERG_M48N3;
MATERIAL --> SS (was ALUMINUM);

#323: ANALYSIS of STRESS with result 0.4

Intended Effects:
==> (STRESS DOWN) Likelihood = 3

Evidence:
(MATCHED-ANALYSES #316 #323)
(MODIFY #318 #321)
(PREVIOUSLY-COUNTERED Cluster-1)
(KNOWN-UNSAT #316)

Side Effects:
==> (WEIGHT UP) Likelihood = -1

Evidence:
(MODIFY-WRONG-DIR #318 #321)

Figure 10: Sample Change Clusters with Evidence

previously defined objects (via ANNOTATE design events). The two attributes changed are the

material and catalog number (CAT-NUM).5 In the first cluster, QIC knowledge is available only for

the change in material for DOBJ92 from Delrin to lighter Aluminum. RCF uses it to generate

the hypotheses that the intent of the cluster is to reduce weight, decrease inertia, or increase

stress. Based on additional evidence (such as the fact that the weight requirements were not

satisfied at that point in the design), RCF’s evidential reasoning calculus infers that Event 312 was

performed to reduce weight but also caused an undesirable increase in stress (as indicated by

the high likelihood values). This latter inference bolsters the hypothesis in the second cluster that

the designer is attempting to reduce stress through material changes in Events 318 and 321 (as

reflected by the PREVIOUSLY-COUNTERED evidence), even though doing so may counteract the

weight decrease of the previous cluster.

8.3 Tradeoffs in QIC Usage

Domain knowledge encoded as QIC tables enables the system to generate richer and more mean-

ingful rationale than does the log of recorded design events in isolation. However, the production

5A change in catalog number corresponds to selection of a different part from a part catalog.
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of the QIC tables by a domain expert can be time-consuming; the background knowledge that a

human designer brings to bear when evaluating a design is so rich that to encode more than a small

part of it can be impractical. In our system, for example, the QIC tables encode only the impact

of changes to attributes or parameters of parts, although in principle the approach could be readily

extended to the encoding of structural changes. In addition, the resulting tables are not necessarily

reusable across domains because they embed assumptions about the context in which operations

will take place and the magnitude of changes.

By using a combination of contextual evidence and background knowledge, rationale extraction

can proceed along the range from knowledge-free to knowledge-intensive, depending on what is

most practical for a given situation. However, in order for the knowledge-free extraction to be

effective, the system must at least have access to the designer’s analysis-related activity.

9 Accessing the Rationale: Designer Interaction

Effective use of constructed rationale requires presentation of the information to a designer in a

concise and understandable manner. The information can be presented from two perspectives:

Summary Mode Information is presented as a general overview of the design process: What did

the designer do, and when (process history)? What different decisions did he or she make,

and why? What operations have been performed on this part? What operations affected this

design requirement?

Goal-directed Mode Information is presented to address specific issues, related to the goals of a

designer who wishes to update or redesign an existing artifact: Are there any dependencies

between this part and that one? What parts/subassemblies are most important for this design

requirement? What tradeoffs were made between this requirement and that one? What

effect do changes on a part have on the design? How important was a given requirement in

the overall design (priority)?

The rationale constructed by RCF would be valuable during the development of the initial

design, providing the means by which a designer can keep track of options that have been explored

and reasons for certain modifications. In this case, access would be focused on answering questions

that target specific issues. As such, we would expected goal-directed access to dominate.

We anticipate the extracted rationale to be of even greater use to designers downstream in

the life cycle of the design. Effective redesign or maintenance will require that the downstream
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designers have a deep understanding of the tradeoffs and issues explored by the original designer,

as well as key implicit assumptions embodied in the design. Designers who were not involved

with the original design would benefit the most; however, the original designers may also need to

refresh their memories of the original design process. For redesign and maintenance, goal-directed

access would certainly be important. However, the designers would first need to develop a broad

understanding of the process involved in the original design, as provided by the summary mode of

access.

RCF provides a hierarchical query interface for extracting summary information about a design

session. Designers can obtain an overall summary of the design in the form of activity phases

grouped by version. They can select a particular version and examine it at the level of activity

phases or part-level operations. Refinement phases can also be examined at the level of change

clusters (which provide hypotheses of, and evidence for, designer intent), or at the design event

level. Refinement phases can be further filtered to examine only change clusters pertinent to a

given design requirement, or a given part. At the event level, RCF provides the option to output

tabular data, suitable for graphical presentation, showing the history of changes to analysis and

parameter values. Changes between different versions of the design can be shown either as text

or in graphical form, highlighting pertinent parts in the CAD file itself. A color-coded effort

distribution for the different parts in the design can also be mapped onto the CAD model.

Information about parts and part histories can be accessed. The user can query both the final

state of a part and its history: its source (a standard or library part, a modified copy of another part,

a part designed from scratch), when (which version) it was introduced into the design or removed

from the design, whether it was a replacement for another part, modifications to the part, and the

effects of those modifications on design requirements, if any. The system also reports any detected

dependencies between the part of interest and other parts. Versions of parts (i.e., a part that was

copied from another part and then modified) can be traced back, along with changes from version

to version. The history of changes to a particular parameter or attribute of a part can be presented

either textually or graphically.

10 Evaluation and Discussion

The motivation for building RCF was to determine the extent to which nonintrusive methods could

extract useful rationale with minimal disruption to the design process. Although no formal eval-

uation has yet been undertaken, results from the application of RCF to the robotic arm design
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case represent a qualified success: useful rationale was extracted and represented in structures that

provide ready user accessibility. However, additional mechanisms will be required to produce a

deployable tool for designers.

10.1 Future Work

The inclusion of additional design metaphors, with particular focus on identifying intent, consti-

tutes one important direction for extending RCF. For example, an Exploration metaphor would

track branching into different versions of a design from the same source, thus generalizing the

linear metaphor currently used. In addition, one might want to determine the priority of different

requirements to the designer. Evidence about priority comes not only from how much effort was

spent on a requirement, but when in the session that effort was expended. Was effort spent mostly

in the beginning, or mostly at the end, or was it distributed throughout the session? The last case

may indicate that this requirement was highly significant, and that the designer spent much of his

or her time balancing other requirements relative to it.

The inspiration for RCF was the observation that many of the operations that a designer can

perform with a CAD tool have meaningful semantic content. As CAD tools increase in sophistica-

tion, the set of semantically meaningful operations will increase further, thus enabling additional

automated rationale extraction. For example, Active Catalog (Ling et al., 1997) provides a rich

query interface for selecting parts from online libraries, as well as simulation capabilities to sup-

port a “try before you buy” model of interaction. Observation of the queries formulated by a

designer interacting with such a tool would yield a rich data stream from which to infer rationale.

10.2 Knowledge Dependence

There is a fundamental tradeoff in the design of knowledge-based systems between the cost of

adding more knowledge (in terms of knowledge acquisition and maintenance) and the value that

the added knowledge brings to the problem-solving process. We intentionally designed RCF with

an incremental knowledge model that enables the system to run with varying levels of domain-

specific knowledge. The main sources of application-specific knowledge within RCF are explicit

design requirements and the QIC tables. The system can operate without this information, but

generates increasingly better results as more of it is provided.

Within RCF to date, design metaphors are domain-independent. However, extraction of more

intent-oriented rationale will most likely require the addition of domain-specific metaphors that
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can directly link actions to explanations.

For domains involving many one-off designs, development of extensive background theories

will not be justified. However, for domains in which designs will be repeatedly produced, the

application of domain-specific knowledge could greatly increase the extent of the rationales that

can be generated.

10.3 Intrusiveness and Usage Requirements

The stated objective for this work was to generate useful design rationale without substantially

interfering with or modifying the normal operations of a designer. RCF strongly satisfies the

requirement for nonintrusiveness: it runs completely in the background without any interruption to

the design process. One could argue, however, that to produce useful rationale information, some

limited changes in the design process are required.

Within the current system, the designer must adhere to a small number of conventions in order

to support the use of RCF. For example, when creating a new version of an existing design file, the

designer must first make a copy of the file and then begin changes on the copy. Changes cannot be

made directly on the original design file and then saved to a new file (i.e., via a Save As capability),

since RCF would incrementally modify its internal model of the original artifact in step with the

designer’s changes, and then be left with no way to undo those changes when the user saves the

artifact as a new version. Conventions of this type amount to minor restrictions on the kinds and

order of operations that the designer can perform, and could be eliminated through slight changes

to RCF or the CAD system itself. In this case, for example, eliminating the Save As capability

from the CAD framework would prevent violations of the convention. Similarly, RCF could be

readily extended to rollback changes when such Save As commands occur, and recreate them on a

copy of the original file.

A more contentious issue relates to RCF’s reliance on semantic annotations for objects, as

assigned through our extensions to MicroStation95. While RCF can operate without them, the se-

mantic annotations are essential for enabling certain aspects of the rationale extraction. In partic-

ular, the Substitution metaphor and the effects-based reasoning about designer intent (Section 8.2)

require knowledge of the semantic types of objects. As noted in Section 2.1, this type of semantic

information is generated as a by-product of parametric design methods and part selection capabili-

ties found within numerous state-of-the-art systems. Thus, while designers are required to perform

extra steps to supply annotations within our framework, we feel that such steps will be eliminated
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in future CAD systems. Of course, the rationale extraction methods that require semantic annota-

tions could not be used in portions of designs that required novel types of components, which will

not be predefined in libraries or as parametric models.

11 Related Work

11.1 Models of the Design Process

RCF bases its rationale extraction primarily on general metaphors for designer activity, rather than

on domain-specific knowledge about the artifact being designed. These metaphors are intended

to reflect the process that designers employ when working. Here, we describe efforts by others to

model design processes.

The task/episode accumulation (TEA) model of the mechanical design process was derived

from protocol analysis of videotaped design sessions (Ullman et al., 1988). This model focuses on

nonroutine design, whereby the designer has the requisite knowledge and experience to produce the

design but the specific task is new. The work was not oriented exclusively toward the automation

of the process, but more generally toward understanding the design process and its implications

for education and the development of designer aids and work environments. The results suggest

that designers satisfy, rather than optimize, and that they do not work from a global plan, but rather

develop a central concept from which to start, and then refine the concept locally, on the task and

episode level.

The Generic Task Model of Design (GTMD) models the design process independently of the

task domain (Brazier et al., 1997). GTMD applies at all levels of design, from conceptual to

detailed. In this model, design consists of three types of manipulation subtasks: of requirements,

of the design process, and of the design object. Each of these subtasks can be decomposed into

modification, update of modification history, deductive refinement (deriving properties, behaviors,

and so forth from the current description), and update of current description.

The TEA model and GTMD both address the full span of individual designer activity, from

receipt of the initial specifications (possibly including the requirements of other parties on the

design team) to the production of the final design. In contrast, RCF considers the designer only

through the medium of the CAD tool. Relative to the TEA model, RCF has access to the layout

and detail tasks, with some access to the catalog selection task. Information about the conceptual

design is deemphasized. The TEA model and the GTMD have distinctions between the acts of

generating options, analyzing and evaluating these options, and deciding among them. Again,
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RCF has access to the analysis (and to a certain extent, the evaluation); decisions that take the

form of patches, redos, or replacements can also be accessed. However, the generation step is less

accessible. More sophisticated access to the catalog selection task, such as the designer using an

online catalog that supports interactive queries (e.g., (Ling et al., 1997)), would provide deeper

insight into the selection task.

11.2 Designer Queries

(Kuffner and Ullman, 1990) presents the results of an experiment in which designers were given a

design and its documentation as well as access to an expert who was familiar with the design. The

designers were then recorded while performing a redesign task. The purpose of the experiment

was to determine the kinds of questions that designers asked, and how they found the answers.

The authors noted several interesting results. Questions about the design tended to be on the

component or feature level two-thirds of the time, with the remaining one-third of the time divided

more or less evenly between questions about the assembly as a whole, interfaces, or relationships

between various components. The designers asked questions about both the original design (i.e.,

information that is more or less available in traditional documentation), and how potential changes

could affect the design. Questions often focused on structure and location more than the operation

or purpose of an object; however, when the designer did have operation or purpose questions, it

was the human expert who most often was the source of information. In fact, although almost

half the questions/conjectures posed by the designers went unconfirmed, or were confirmed by the

designers’ internal knowledge, the great majority of the remaining questions were answered by the

expert. As the authors say:

The fact that ... designers referred to the examiner’s stored knowledge at all indicates

that mechanical designers would use design information stored in any intelligent CAD

tool, if available.

These results suggest that “intelligent CAD tools” should concentrate on providing operation and

purpose information, where possible, because traditional documentation omits them. They also

suggest that designers would use such a tool even for information already stored elsewhere, if the

information could be readily extracted (as from a human expert).

Based on a similar survey of designer protocol data, (Gruber and Russell, 1996) concludes

that design rationale tools should concentrate on collecting a broad range of pertinent data about a
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design. This data should be retrievable in response to queries in such a way that rationale can be

reconstructed from the data. They call this the generative approach to design rationale.

11.3 Design Rationale Acquisition and Retrieval

Early work on the acquisition of design rationale focused on direct solicitation methods, whereby

users are explicitly queried or provided with structured interfaces to elicit rationale (Russell et al.,

1990; Gruber, 1991). Because these approaches impose a heavy documentation burden on design-

ers, they have had limited success.

Several attempts have been made to ease the problem of automated rationale generation by

imposing structure on the design process (Ganeshan et al., 1994; Brazier et al., 1997). The general

idea is to model design as selection from predefined transformation rules. Rule selections are

recorded along with rule-specific rationale. By structuring the design process, these approaches

can provide deeper explanations of designer intent than can RCF. However, they greatly constrain

designer activities and are unsuitable for ad hoc design cases requiring novel design methods.

For example, (Ganeshan et al., 1994) describes a system in which the design is generally ma-

nipulated through predefined transformations on objectives. To manipulate the design directly, a

designer must provide explicit justifications to the system. The design history consists of the log of

transformations, while designer intent is is described by the mapping between transformations and

objectives. Similarly, the work in (Brazier et al., 1997) models design as selection from predefined

transformation rules that include rationale information related to the operations performed by the

rule. Upon selection of a rule, the choice is recorded along with the rule-specific rationale. The

paper provides an example of how to use the produced rationale to support redesign, related to the

design of the Fokker 60 (Fo60) passenger aircraft from the design of the Fo50.

The Active Design Document (ADD) system (Garcia and Howard, 1992; Garcia et al., 1997;

Garcia and de Souza, 1997) generates rationale for parametric design tasks, in which the design

process involves constraining or selecting values for fixed sets of parameters. This class of designs,

while important, is much narrower in scope than that addressed by RCF. The early ADD system

observed the designer’s actions, and then attempted to generate explanations for them by using a

predefined knowledge base for the domain. If the system was unsuccessful, or predicted an action

other than that taken, it would ask for explanation. In this way, a knowledge base could be built

from observed cases. More recent versions of ADD can generate ranked alternatives and allow the

designer to change the knowledge base to update the system’s reasoning abilities.
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(Qureshi et al., 1997) describes a system for the nonintrusive archiving, and subsequent query-

ing, of electromechanical design process histories. Its Integration Core Model representation of

design history uses both a generic process model and specialized process models to represent the

design information. The generic process model is independent of the task domain (within the

larger domain of electromechanical design) and the type of design task performed (e.g., concep-

tual, parametric). Generic process history is essentially a step-by-step record of all activity. Local

specialized models, which use more specific domain knowledge to structure low-level detailed in-

formation about various aspects of the design, can be incorporated into the system. In particular,

design rationale (in the sense of designer intent) can be formulated as a specialized model, separate

from the Core Model. This approach allows different domain-specific models of rationale to be

incorporated into the archiving process.

The Design History Tool (Chen et al., 1991) evolved from TEA model of the design process

and the studies of Kuffner and Ullman on the understanding of others’ designs. This system stores

structured, hierarchical representations of a design, which are extracted from manually transcribed

videotapes of design sessions that include what the designer says as well as the operations he or

she performs. The resultant design history can be browsed with respect to structure, evolution,

alternatives considered, and dependencies in the design or among the requirements. This system

provides more direct access to the designer’s thought processes and intentions than does RCF, but

at the costs of intrusiveness into the design process and labor-intensive data input.

12 Conclusions

RCF’s methods for acquiring design rationale present an innovative approach to a difficult and im-

portant problem. Previous work on rationale acquisition has focused on highly intrusive techniques

that either involve extensive participation by the human designer or change the underlying design

process. Because of the level of disruption to the underlying design process, tools of this type have

not been embraced within the design community.

In contrast, our idea of extracting design rationale from observations of designer activity is

rooted in a philosophy of nonintrusiveness: rationale is produced as a natural by-product of the

design process. The human designer will need to intervene to supply certain information of rel-

evance to the design but should be relieved of responsibility for recording information about the

noncreative aspects of a design. We have shown that this type of automation is possible by applying

key AI methods such as structured knowledge representation, knowledge-based plan recognition,
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clustering techniques, and basic qualitative reasoning.
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