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We describe statistical techniques for effective evaluation of large
virtual combinatorial libraries (.1010 potential compounds). The
methods described are used for computationally evaluating tem-
plates (prioritization of candidate libraries for synthesis and
screening) and for the design of individual combinatorial libraries
(e.g., for a given diversity site, reagents can be selected based on
the estimated frequency with which they appear in products that
pass a computational filter). These statistical methods are pow-
erful because they provide a simple way to estimate the properties
of the overall library without explicitly enumerating all of the
possible products. In addition, they are fast and simple, and the
amount of sampling required to achieve a desired precision is
calculable. In this article, we discuss the computational methods
that allow random product selection from a combinatorial library
and the statistics involved in estimating errors from quantities
obtained from such samples. We then describe three examples: (1)
an estimate of average molecular weight for the several billion
possible products in a four-component Ugi reaction, a quantity
that can be calculated exactly for comparison; (2) the prioritiza-
tion of four templates for combinatorial synthesis using a compu-
tational filter based on four-point pharmacophores; and (3) se-
lection of reagents for the four-component Ugi reaction based on
their frequency of occurrence in products that pass a pharma-
cophore filter. © 2000 by Elsevier Science Inc.
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INTRODUCTION

Combinatorial chemical synthesis offers the promise of large
numbers, with a single synthetic strategy routinely providing
access to millions of unique compounds. The potential avail-
ability of millions or even billions of compounds is particularly
appealing in the area of drug discovery, where good lead
candidates are rare,1 and the chance of finding a lead candidate
is generally thought to increase with the number of compounds
synthesized and screened. However, large numbers can be a
burden. Associated with each chemical synthesized in a com-
binatorial library is the overhead of purification, analysis, bi-
ological assay, and deconvolution of potential hits if mixtures
of compounds are screened. The resources necessary can offset
the benefits, and it quickly becomes desirable to limit and focus
synthetic and screening efforts. To this end, computational
models have helped direct drug discovery efforts using com-
binatorial synthesis.2–5Such models can be used to filter a large
library, resulting in a smaller library that is enriched for a
desired property. The resultant smaller library is taken forward
to chemical synthesis, purification, and analysis, and finally
assayed against one or more targets.

The computational methods applied to combinatorial library
design are closely related to methods used in searching a virtual
database of compounds. In screening applications, libraries of
compounds, generated from internal synthetic efforts or pur-
chased from external sources, are screened against newly iden-
tified targets. These collections are often large (105 to 106

compounds), and screening all of the compounds may not be
practical. Computational methods can be employed at this
stage to filter the compounds that are taken forward to screen-
ing. If active compounds are already known, the filter can take
the form of a similarity search, i.e., identification of the com-
pounds in the collection that are most chemically similar to the
known actives.6–8 A more general approach is to take forward
a subset of the collection that is highly diverse with the hope
that the chemical information in the subset is sufficiently close
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to that of the entire collection so that no opportunities are
missed.3,9 Clustering methods,10–13in which chemically similar
compounds are grouped, also can be useful, because corporate
collections often consist of compounds from previous discov-
ery efforts (against different targets) and, therefore, fall natu-
rally into clusters. Representatives from each cluster can be
taken forward, and, when hits are identified, the next screening
round can be focused on the other members of the “active”
clusters. The important point is that all these methods apply
computational filters to the library. Each compound is repre-
sented on the computer and evaluated using algorithms de-
signed to eliminate undesired molecules.

Computational filters, similar to those used for the searching
of screening libraries, can be applied to combinatorial library
design. Such libraries typically are derived from a scaffold, a
set of chemical reactions, and selected lists of reagents. The
resulting products can be representedin silico and selected for
synthesis based on the criteria described earlier (i.e., similarity
to known actives, chemically diverse from one another, etc.).
However, combinatorial synthesis poses the following addi-
tional constraint. To reduce costs and to simplify the overall
synthesis, the number of reagents at each diversity site should
be kept to a minimum, which may conflict with the selections
from the computational filter. Note that additional complica-
tions associated with combinatorial mixtures are not present in
our designs, because our synthetic schemes result in purified,
single compounds. This constraint creates an interesting opti-
mization problem: How can we maximize the number of de-
sired compounds (those that pass the computational filter),
while keeping the number of reagents to a minimum? This
problem has been addressed for chemistries with relatively
small potential product spaces (,106 compounds) by methods
that enumerate the complete set of products and then select a
subset that optimizes the characteristics of the products while
maintaining the constraints of combinatorial synthesis.14,15But
what if the set of possible products is too large to allow for the
complete computational examination of all possible products?

This article describes how random statistical sampling of the
possible products in a combinatorial library provides a simple
way to estimate the properties of the overall library without the
need to explicitly enumerate all of the library’s possible prod-
ucts. This allows computational filters to assess combinatorial
libraries that are vast (e.g.,.1010 possible products). Use of
these statistical estimates allows us to evaluate and prioritize
different libraries that are candidates for synthesis and screen-
ing. In addition, an extension of this technique facilitates se-
lection of reagents for synthesis at a diversity site, as they can
be ranked by the estimated frequency with which they appear
in products that pass a computational filter (i.e., a “virtual
screen”). The statistical methods presented have the advantage
that they are fast and simple, and the amount of sampling
required to achieve a desired precision is calculable.

We first discuss the software design that allows random
product selection from a combinatorial library and the statistics
involved in estimating errors from quantities obtained from
such samples. We then describe three examples: (1) an estimate
of average molecular weight for the several billion possible
products in the four-component Ugi reaction, a quantity that
can be calculated exactly for comparison; (2) the prioritization
of four templates for combinatorial synthesis using a compu-
tational filter based on four-point pharmacophores; and (3)
selection of monomers for the four-component Ugi reaction

based on their frequency of occurrence in products that pass a
pharmacophore filter.

METHODS

Virtual Combinatorial Libraries

Representation of molecules in computer programs is now
commonplace: in two dimensions, molecules are represented as
networks of elements and bonds; in three dimensions, coordi-
nates of atomic nuclei are stored and the relative positions of
atoms in a molecule are mostly determined by force-field
approximations to the interatomic forces. In either case, it is
impractical to construct and store all possible products for large
combinatorial libraries in computer memory. However, it is
possible to represent a combinatorial library as a set of reagents
and reactions. A chemical reaction simulation program (the
Cascader™) was developed internally to provide automation in
the enumeration of combinatorial libraries. Briefly, the Cas-
cader™ takes reactant molecules, reaction transformations, and
synthesis schemes as input. The reactant molecules provide the
building blocks for product enumeration. Reaction transforma-
tions provide details about what combinations of functional
groups will react, along with the atom transformations for
converting combinations of reactants into products. The syn-
thesis schemes (“cascades”) describe how reactions are chained
together to simulate a multistep (or multicomponent, “one-
pot”) synthesis. The reaction-based product enumeration al-
lows access to a very large population of products (millions to
billions), which cannot be practically enumerated, and provides
an implicit way to store them. Instead of storing the list of
molecules that comprise the collection, we store a set of rules
and constraints for generating such molecules from the much
more easily stored reactants.

Random Sampling of Products

The combination of a cascade and sets of reactant molecules
defines a population of virtual products, or a “virtual library.”
If each set of reactant molecules is thought of as a list, each
combination of reactants (one per set) can be thought of as a
coordinate in the virtual library, in which each dimension of the
coordinate is an index into the corresponding reactant list. The
Cascader can enumerate specific coordinates of a virtual li-
brary, each of which represents a particular combination of
reactant molecules that result in a product structure. This
provides a convenient mechanism for fully enumerating all
products or sampling a subset of products from a specified
virtual library. If only unique products are desired, a canonical
representation of each product can be constructed and com-
pared to the growing list of previously seen products.

These core library enumeration algorithms form the basis of
several stand-alone tools that can produce arbitrary subsets of
unique products of specified sizes. They also can be accessed
via an extension module in a chemical scripting environment
based on the Python programming language to provide a source
of molecular products that can be sampled iteratively until
some arbitrary termination condition is met. In this case, the
termination condition of interest is a user-specified sampling
accuracy.
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Estimating Sampling Error

The reaction-based product enumeration provided by the Cas-
cader allows us to store implicitly a large population of prod-
ucts. Although this population is too large to enumerate ex-
plicitly, any product can be readily constructed from a chosen
combination of reagents and the rules for combining them. By
storing our collection of molecules in this way, we can generate
a uniform random sample (with or without replacement) and
use the proportions measured in the sample to estimate the
properties of the entire (implicit) collection.

Fortunately, the manner in which sample measurements
approximate the total population effectively is well understood.
We can, therefore, design our sample to guarantee that the
measured proportion is within a given tolerance and probabil-
ity. It has been shown previously (see, for example, Hoeff-
ding16) that if we wish to measure a proportion to within an
absolute error of6x%, a sample of size k has a probability of
giving an incorrect result of no more than17:

2e2kx2/2,000. (1)

For example, a sample of size 1,000 is sufficient to guarantee
a measurement that falls within a 10% absolute error of the true
value with a probability.98.5%. It is important to note that
20% estimated to an absolute error of 10% is a number from
10% to 30%, not 18% to 22%. As long as the sample is drawn
uniformly (and independently), this bound (Equation 1) is
correct, independent of the size of the total population and
independent of the unknown proportion.

Because Equation 1 is general, it tends to predict that a fairly
large sample size is necessary. However, if we were to incor-
porate domain knowledge (such as known bounds on the true
proportion and, to a lesser extent, the total population size), we
can prove that smaller samples suffice. For this case, we can
use the exact binomial formula instead of the Hoeffding esti-
mate. When our sample is drawn with replacement, the exact
odds of success become:

O
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~p2x!
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~p1x!

100 N SN
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where N is the size of the original population and p is the
(unknown) true proportion (written as a percentage). As p will
not be known, a good approximation can be obtained by
replacing the unknown value of p with the worst-case value of
50% or with a user-supplied bound. Also, the exact value of N
is not required, so any upper bound will do.

For samples without replacement (that is, samples with no
repeated values), the bounds become slightly tighter (especially
for small N); however, the explicit odds of success again are a
simple series. We have implemented each of the methods
described here and use them, as appropriate, to design our
samples. For the more difficult problem of measuring very
small proportions to a given relative error, see Mount.18 These
methods can be used to make informed choices between rare
events (one of which might be much more desirable than
others).

Computational Filters

In two of the examples of random sampling, we use computa-
tional filters constructed from pharmacophore-based 3D whole

molecule descriptors. Pharmacophore descriptions of mole-
cules and their application to virtual library searching and
design have been described elsewhere,19–21and only the details
pertaining to their use in evaluating random samples will be
summarized here. The major component of our 3D descriptors
is the “four-point pharmacophore,” which consists of four
chemical features and the six interfeature distances, and a
chiral indicator. Standard feature types (i.e., hydrogen-bond
acceptors and donors, hydrophobes, negative and positive
charges, and aromatic groups) were identified on molecules by
substructure query matches as described by others.22,23 The
potential number of pairwise feature distances is limited to a
specific set of distance bins (e.g., interfeature distances be-
tween 3.5 and 5 Å would map to a single distance bin). We
used 14 bins for the two- and three-point pharmacophore
distances, spanning 1.6 to 13.2 Å, and eight bins for the
four-point pharmacophore distances, spanning the same dis-
tance. Thus, the “pharmacophore space” (all possible combi-
nations of two, three, and four features) is predetermined by
interfeature distance bins and the specific set of features. Sim-
ilar to Mason et al.,20 we use a “molecular signature,” a
bit-string where the presence or absence of each of the two-,
three-, or four-point pharmacophores is recorded. This resulted
in a pharmacophore signature length of;12 million bits.

Our computational filters consist of a specific subset of the
bits in the pharmacophore signature (an ensemble) that is
associated with a desired property in a chemical product (e.g.,
pharmacophores that are present in biologically active mole-
cules). In the examples that follow, two different filters are
used. The first consists of a randomly selected set of 100
pharmacophores from the;12-million bit signature. The sec-
ond consisted of an ensemble of 62 pharmacophores contained
in the conformation of NAPAP bound to Thrombin (1ETS
structure in the protein databank).24

To assess whether an individual molecule has the desired
property (i.e., passes the computational filter), we generate the
conformational model for the molecules using an in-house
program CONAN (CI onformational AI nalysis by intersection)
described in greater detail elsewhere.25,26Then all two-, three-,
and four-point pharmacophores that are present in the mole-
cule’s conformers are recorded as the molecule’s pharmaco-
phore signature. The molecule passes the computational filter if
its signature contains a specified number of the pharmaco-
phores in the ensemble.

It is important to point out that these computational filters
were generated for purposes of demonstrating the sampling
methods rather than constructing a predictive computational
model for biological activity. Those interested in the construc-
tion of pharmacophore ensembles generated from activity data
for a particular biological target should refer to the work of
Bradley et al.26

Applications of Random Sampling
Physical property estimation The simplest application of

random sampling is estimating the average physical properties
of the products in a combinatorial library. Each compound
chosen is constructedin silico, and its properties are calculated.
As the compounds are sampled sequentially, running averages
of properties are computed and convergence criteria are
checked. When the estimated errors for the given sample size
are acceptably small, sampling is terminated. Molecular
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weight, calculated octanol/water partition coefficient, and num-
ber of rotatable bonds are examples of physical properties that
can be estimated and used to compare combinatorial libraries.
These properties, although not well correlated with biological
activity, are useful in determining which libraries follow ob-
served properties in known drugs.27,28

Template evaluation A more challenging application for
random sampling is to use the sampled compounds to estimate
what fraction of a combinatorial library will pass a more
complex computational filter (described earlier). After a sam-
pled product is synthesized on the computer, its low-energy
conformations determined, and its pharmacophore descriptor
constructed, a score is assigned to the product based on the
number of pharmacophores it has in common with those in the
virtual filter. As each randomly sampled product in the virtual
combinatorial library is sampled, a running average of scores is
kept and an overall “pass rate” (i.e., fraction of products that
pass some score threshold) is computed. Libraries then are
compared based on their pass rates. The higher the pass rate,
the more likely the library is able to provide products that pass
the computational filter. We used a pharmacophore filter of
500 randomly selected pharmacophores. To pass the filter, a
compound had to have.100 of these pharmacophores present
in its signature.

Monomer selection Random sampling techniques can be
extended to facilitate combinatorial library design for synthesis
on a single template. Often combinatorial chemistries involve a
single chemical scaffold, or template, on which pendant groups
can be attached to “diversity sites” using various synthetic
strategies. Each diversity site has a restricted set of chemicals
that are appropriate, usually because they must have a reactive
chemical moiety (e.g., if a template with an amine participates
in an amide bond formation, the reagent must be an acid).
Nevertheless, each reagent list for a diversity site can be quite
large (hundreds or thousands of compounds), and it is desirable
to limit consideration to those monomers that are more likely to
be present in “successful” (i.e., model matching) products. This
can be accomplished using a technique called “lockdown”.

In random sampling with “lockdown,” products are gener-
ated until there are enough of them to gather statistics on the
monomers at the different diversity sites. At that point, one
diversity site is selected, and each possible monomer at that site
is evaluated based on its prevalence in products that pass the
virtual filter. Thus, each monomer has a “success rate” that is
used to rank the monomer list. In this example, success was
defined as passing a threshold of between 30 to 40 bits from the
filter of 63 pharmacophore bits from a thrombin-inhibitor (de-
scribed in the Methods).

Monomers that are seldom found in successful products are
removed from the initial reagent list for that diversity site,
leaving only those reagents whose products had a high success
rate. This diversity site has then been “locked down,” i.e., only
a subset of the original reagent list remains. The process then
is repeated for a second diversity site, only this time, the
potential product space is reduced by the fraction of reagents
that were purged from the first lock-down.

Each successive lockdown results in a smaller virtual prod-
uct space that contains a higher fraction of successful products
than were present before the lockdown took place. After the
last lockdown, we are left with a sublibrary that has a high
percentage of products that pass the virtual filter and that obey
the constraints of matrix combinatorial synthesis. The lock-
down can be carried out in a way that yields a library that,
although still too large to take forward to combinatorial syn-
thesis, can be fully enumerated on the computer. Once this is
the case, other optimization methods can be applied to design
an even smaller, synthetically practical, combinatorial li-
brary.14,15,29,30

RESULTS

Example 1: Estimating Physical Properties:
Molecular Weight

The four-component Ugi reaction31 (Figure 1) is a good exam-
ple of a reaction that can be used to generate a very large
combinatorial library. Computational analysis of the entire
library, which in this example has;13 3 109 products, is
impractical. However, its properties can be estimated from a
random sampling of its products. The molecular weight is an
example of such a property. Because the average molecular
weight of the products is the sum of the average molecular
weight of the reactants (minus the weight of the elements that
are lost in the reaction), we have an exact solution for the
average molecular weight of the;13 3 109 products. Figure 2
shows the estimate of this quantity based on random sampling
of products. An average molecular weight calculated from only
600 products is within 0.5 amu of the actual value of 615.
Moreover, the error in the estimate is easily calculated so that
the number of samples necessary to obtain a given error is
known.

Molecular weight was chosen because its value for the entire
library was readily calculable. Other physical properties, such
as the number of rotatable bonds or the calculated octanol/
water partition coefficient, could be calculated using this
method. The results from a computational assessment (e.g., a
score indicating how well a product matches a computational

Figure 1. Four-component Ugi reaction. For the given number of isocyanides, aldehydes, amines, and carboxylic acids, there
are (theoretically) more than 13 billion products.
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model) of each sampled product can be the estimated quantity,
as is the case in the following examples.

Example 2: Template Evaluation

In this example, we rank order chemistries based on the ability
of their products to pass a computational filter. Randomly
chosen products from each chemistry can be evaluated and an
estimate of an overall “pass rate” can be obtained. Combina-
torial libraries with the best pass rates would receive priority
for chemical synthesis or would be subject to more detailed
computational analysis.

As an example of this, we chose four libraries whose prod-
ucts differ only by the chirality of the template that displays the
monomers (Figure 3). Each library contained 1,280 compounds
built around a chiral cyclopentane template. The products in
each library were sampled and scored against a pharmacophore
filter, as described in the Methods.

The score of a molecule is the fraction of the pharmacoph-
ores in the ensemble filter that are contained in the molecule’s
pharmacophore descriptor (a similar procedure is described in
greater detail by others,20,26 although in our case, each mole-
cule is scored individually by its ability to present pharmacoph-
ores that are contained in the ensemble). If the score is greater
than an established threshold, the molecule is a “hit.” The
fraction of sampled molecules in a library that passes the
threshold is the estimate of the library’s hit rate.

The results for the estimated hit rates for the four libraries
are shown in Figure 4. As seen in Figure 4, the relative ranking
of the libraries is quickly established. After fewer than 10% of
the products of the libraries have been sampled, the libraries
could be prioritized for further analysis or synthesis. Thus, very
rapid library comparisons can be made from randomly sampled
products of the virtual libraries.

Of course, four libraries that consist of only 1,280 com-
pounds could be prioritized through explicit enumeration of all
the compounds in the virtual libraries rather than by random
sampling. A more practical example can be drawn from the
template evaluation and prioritization in one of our therapeutic
projects. In this project, a pharmacophore model was derived
from known activity data. An ensemble of 50 pharmacophores
was identified that was able to distinguish active from inactive

molecules. These pharmacophores were used to score products
from virtual libraries. Approximately 70 templates were pro-
posed for synthesis, with each consisting of.250,000 possible
chemical products. Each chemistry was evaluated from a ran-
dom sample of;5,000 of its products. A threshold of 60% was
established for a compound to be model matching. With this
threshold, seven of the chemistries contained.1% model-
matching compounds and three contained.10% model-
matching compounds. Thus, three chemistries were taken for-
ward to synthesis based on this evaluation. This more practical
example shows how chemistries can be prioritized from eval-
uation of a small fraction (in this case;2%) of their possible
products.

Figure 3. Four stereoisomeric templates and the types of
monomers possible at each of three diversity sites. The
diastereomer products were sampled randomly and scored
to prioritize each template for chemical synthesis. The re-
sults of the evaluation are shown in Figure 4.

Figure 2. Estimate of the average
molecular weight of Ugi reaction
products as calculated by random
sampling of the products. Shown
are the estimates based on the num-
ber of samples with the associated
estimated error (calculated from
Equation 2). The solid horizontal
line is the exact result.
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Example 3: Monomer Selection Using
Combinatorial “Lockdown”

After templates and chemistries have been identified as candi-
dates for combinatorial synthesis, the task of selecting reagents
remains. Depending on the template and the reaction, each
diversity position may permit the use of hundreds or even
thousands of possible reagents. Limits on resources for synthe-
sis of combinatorial libraries require that the potential reagent
lists be trimmed significantly. Random sampling of a virtual
library could identify individual compounds that are model
matching. Such “cherry-picked” molecules often are incompat-
ible with matrix synthesis. Random sampling followed by
“lockdown” as described earlier provides an efficient means to

identify a subset of the possible products that are both model
matching and consistent with constraints of matrix synthesis.

We will again use the four-component Ugi reaction (Figure
1) to illustrate library design using random sampling with
lockdown. The Ugi reaction is a one-pot reaction and not
subject to the constraints of efficient matrix synthesis. Never-
theless, if one seeks to minimize the number of reagents
ordered while maintaining a high density of model-matching
compounds, the requirements are identical to those of matrix
synthesis: Given sets of reagents, which subsets of the lists will
result in a high density of model-matching products?

In this example, we use the lockdown method to trim the
number of products from.1010 to ,105. In the full virtual
library, which has reagent list sizes of 9 isocyanides, 461
aldehydes, 2,285 amines, and 1,372 acids for the R1, R2, R3,
and R4 positions, respectively, the fraction of model matching
compounds is,0.02%. After lockdown, the reagents list sizes
have been trimmed to 9, 19, 20, and 19, and the final density
of model matching compounds (i.e., those that contain 40 of
the 50 preferred pharmacophores) is 100%.

Table 1 shows the number of reactants present in the virtual
library at each stage of the lockdown. It is possible to limit the
amount of sampling necessary by a judicious selection of the
order of the reagents locked down. By selecting the shortest
monomer list for the initial lockdown, the smallest number of
products will have to be sampled to achieve the desired statis-
tical accuracy (compared to the number of samples required if
a larger list were chosen for the initial lockdown). In this way,
when the statistically more challenging larger lists are exam-
ined, the virtual library size has already been greatly reduced,
making the search easier. In the first step, approximately 400
aldehydes are filtered out. For each aldehyde, the sampled
products that contain it are able to meet the requirements for
success (matching 30 of the 50 pharmacophores in the model)
more than 30% of the time. In the next stage of lockdown, only
80 aldehydes are allowed to participate in the random sampling
of products. Based on;40,000 random samples from this
reduced product space, the acid list is reduced by a factor of 20
through application of the same filter with a more stringent
cut-off of 36 of 50.

At each stage of the lockdown, the size of the library
decreases and the quality of the products increases. This allows
us to adjust the filters to make the requirements more stringent.
The threshold for the fraction of products that pass the cut-off

Figure 4. Cumulative pass rates for the four chemistries
shown in Figure 3. Each randomly sampled product is a
stereoisomer of those on the other three templates, so only
the stereochemistry of the template differs at each sample.
The first template clearly contains more products that pass
the virtual filter and is, therefore, the leading candidate
template for chemical synthesis.

Table 1. Stages of combinatorial lockdown

Lockdown
stage

Monomer
selected R1 R2 R3 R4

Possible
products

Products
sampled

Filter
pass ratea

Threshold
for filter

1 R2 9 461 2,285 1,372 13,007,197,980 36,000 0.306 0.20 30
2 R4 9 80 2,285 1,372 2,257,214,400 40,000 0.306 0.16 36
3 R3 9 80 2,285 69 113,518,800 79,000 0.306 0.08 38
4 R2 9 80 106 69 5,266,080 7,000 0.306 0.13 40
5 R3 9 19 106 69 1,250,694 14,000 0.306 0.06 40
6 R4 9 19 20 69 235,980 9,000 0.866 0.05 40
Final R1/R2/R3/R4 9 19 20 19 64,980 64,980 1.00 40

a Errors calculated from Equation 2.
See also Figure 1 for explanation of R1–R4.
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is raised, as is the number of pharmacophores that must be hit
by a successful product. The last stage of filtering creates an
optimally dense set of model matching compounds based on an
explicit enumeration of all the products in the virtual library.30

DISCUSSION

We have shown how random sampling is a very practical and
useful tool in the computational evaluation of huge combina-
torial libraries. It provides an efficient means to prioritize
combinatorial chemistry strategies and can be used to select
reagents for combinatorial synthesis on a single template.

The main advantage of library design using random sam-
pling over other design methods derives from the reaction-
based representation of proposed chemical synthetic strategies.
Because of this, virtual products can be randomly chosen,
constructed, and computationally evaluated without the need to
fully enumerate all possible products. Thus, conclusions are
based on samples that represent the full chemical product space
available to the chemical synthesis at a small fraction of the
computational cost that would be required to evaluate the entire
library of products.

In our analysis of randomly sampled compounds from large
virtual combinatorial libraries, we have concentrated on the
estimated number of compounds that pass some computational
filter and, as a result, did not concern ourselves with the
estimated shape of the distribution. One could easily use the
randomly sampled compounds to estimate other quantities of
the distribution of the entire combinatorial library, such as
higher moments or properties of the tail of the distribution
using extreme value theory.32

The results from random sampling are approximations, but
the strength of this method is that the errors associated with
these estimates can themselves be estimated based on statistical
theory. This permits calculation of the number of samples
required to achieve a given accuracy in the results. Such
estimates are critical when determining the necessary compu-
tational resources and time, and this ability is becoming in-
creasingly important as computational methodologies are in-
corporated into mainstream combinatorial production
pipelines.

A more novel application of random sampling is the com-
binatorial “lockdown” approach, which facilitates reagent se-
lection for specific combinatorial reaction schemes that are
based on a single chemical template or scaffold. By succes-
sively trimming away reagents that are seldom found in suc-
cessful products, this technique identifies regions of product
space that have a high density of desirable products and obey
the constraints of matrix synthesis. In the Ugi reaction exam-
ple, the number of products was reduced by five orders of
magnitude within a handful of CPU days.

The lockdown method is flexible as well. The stringency of
the filters applied to the randomly sampled compounds can be
modulated at each stage of the lockdown as the quality of the
surviving products in the virtual library improves. In addition,
the process can be more iterative. Once all the monomer lists
have been locked down, the constraints on any of the monomer
positions can be relaxed, and the lockdown at that monomer
site can be repeated to see if the chosen reagent lists change.
That would provide a more robust, self-consistent lockdown
procedure.

However, the lockdown method has some limitations. It is

an approximation to a full evaluation of the entire library, and
there is no guarantee that the final monomers chosen result in
the best set of products. Moreover, even though the evaluation
is based on fully constructed products, there is the possibility
that the best monomers match the computational model (i.e.,
pass the virtual filter) by themselves. If this were the case, the
result would be equivalent to independent computational eval-
uation of the reagents. However, the randomly sampled prod-
ucts that satisfy the computational model are known, and they
can be examined to determine how they satisfy the model. For
the pharmacophore models we used, we have found that whole
products, rather than individual side chains, are necessary for
success. In the Ugi lockdown example, partial products were
constructed for each reagent list (by reacting the other diversity
sites with a minimally small reagent). Only 2% of these com-
pounds contained over 30 of the 62 pharmacophores in the
ensemble filter, and none contained over 40. Thus, the enrich-
ment shown in Table 1 could not have been obtained from
analysis of the side chains alone.

The methods and applications that we have presented in this
article illustrate the utility of random sampling in the evalua-
tion and design of very large combinatorial libraries.* We have
considered primarily computational filters based on three-
dimensional descriptors, although other metrics for evaluating
products, such as two- or three-dimensional diversity or even
scores from docking calculations, could be used as well. How-
ever, three-dimensional descriptors require a complete confor-
mational model of each compound analyzed and, as a result,
are among the most computationally ambitious calculations in
combinatorial library design. Thus, the statistical techniques
outlined here allow the application of very complicated models
to extremely large combinatorial libraries.
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