
knotEd

A program for studying knot theory

John Mount

Hewlett Packard, mailstop 44uk

19447 Pruneridge Avenue

Cupertino, California 95014

February 1989

DRAFT

2

1. Elementary knot theory, a brief introduction

The theory of knots has had constantly waxing and waning popularity.
The popularity knots have enjoyed is most likely due to the fact that knot
theory really is the theory of knots: twisted and linked pieces of string.
Also knots were a proving ground for a lot of the early work in topology.
The central question of knot theory is "when do two diagrams represent
the same knot?" To answer this question we first must define some terms.

A knot is always a piece of string with both ends attached (if the
ends were not attached there would be no theory, as any piece of string can
be stretched straight, but not all knots are equivalent to a simple loop).
The first point to be made is that all knots discussed here will be "tame
knots". A "tame knot" is a piece of string that has only a finite amount of
twisting. Tameness is a property shared by all knots tied in actual string
(since all real string has non-zero thickness and finite length). The mathe-
matical way to approach this is to study only knots that are built by con-
necting a finite number of line segments (when altering a knot we treat
these as not being able to pass through each other and having thickness) in
3-space (this is also called a simplicial approximation). Such a stiff defini-
tion of a knot has the additional advantage that it is easy to draw a diagram
representing the knot. The knot in 3-space is simply projected onto a
plane. The resulting shadow is then a collection of line segments (some
possibly crossing). Now since the knot is made of a finite number of seg-
ments it is easy to see that there are only a finite number of points on the
projection where lines cross, it is also true that with a slight change in the
angle of the projection we can break a crossing that involves 3 or more
line segments into several crossings involving only 2 line segments. Fur-
thermore, since everything is finite, it is alway possible to find a projection
such that all crossings involve only 2 line segments. These crossings can
then be drawn such that we can see which segment passes under which.
An example of the diagram of a simple knot, called the trefoil, can be seen
on the left. It is customary to ignore the fact that knots are polygons and
draw the figures in the more relaxed fashion of the one on the right.

DRAFT

3

As we said the central question is determining when two diagrams repre-
sent the same knot. A concrete example would be to prove that one of the
following diagrams is equivalent to the trefoil pictured above and that one
is not.

The knot on the left can be deformed (without allowing pieces to pass
through each other) into the trefoil in three steps (illustrated below). Rei-
demeister proved that two diagrams represent the same knot if and only if
they could be deformed into one another using his 3 different types of

DRAFT

4

Reidemeister moves (and their inverses). The moves are demonstrated as
we fix the trefoil. First the string is pulled over a crossing (Reidemeister
move number 3) then the string is pulled off another string (Reidemeister
move number 2) and finally the spurious loop is removed from the string
(Reidemeister move number 1).

Tw o diagrams that can be deformed into each other obviously represent
the same knot (since none of the Reidemeister moves require a piece of
string to pass through another piece of string) but the usefulness of these
moves is that Reidemeister proved that two diagrams represent the same
knot only if they can be deformed into one another with the Reidemeister
moves. This theorem allows us to study knots without using any topology.
In fact knot theory can be reduced to a grammar problem in the following
manner: First label the n crossings in a given knot diagram with the
labels 1 through n. Then mark an arbitrary (but consistent) directional
arrow on all of the string and give each crossing a sign of "+" if the top
string would be to point to the right if you were standing on the crossing
facing in the direction of the bottom string, else give the crossing a sign of
"-". Signed crossings are demonstrated below:

DRAFT

5

++
--

Now walk along the knot one time and each time you encounter a crossing
call out the sign, the label, and whether you are on the top or bottom level.
Thus the following knot could be marked as shown and would yield the
sentence: "+1down to +2up to +3down to +4up to -5down to -6up to
+4down to +3up to +2down to +1up to -6down to -5up".

+1
+2+3+4

-5

-6

+4 +3 +2
+1

-6

-5

Then the Reidemeister moves could be rephrased as some kind of context
sensitive grammar. Unfortunately, like many grammar problems, no algo-
rithm is known for generating a sequence of Reidemeister moves to trans-
form one knot into another. And because the number of crossings do not
help determine an upper bound on the number of Reidemeister transforma-
tions required brute force searching is not an effective method (it merely
shows that the problem of determining if two diagrams are knot-isotopy
problem is no harder than the halting problem, which is not saying much).

DRAFT

6

Despite this the Reidemeister moves are very useful in knot theory. The
most common use of them is to develop invariants. Many papers present
algorithms that given a diagram calculate a polynomial from that diagram.
If the method of calculation is unaffected by all 3 Reidemeister moves
then it is easy to see that if two diagrams have different polynomials they
do indeed represent different knots (though the converse is often not true,
nobody has yet found a simple invariant that proves diagram equivalence).
Many polynomials are able to differentiate the trivial loop from the trefoil.

DRAFT

7

2. Design objectives

The design objectives for knotEd were to supply the user with an easy
way to draw and alter a knot. By drawing a knot we mean to enter a knot
into the computer in such a way so that the user can control the appearance
and at the same time the computer understands the semantics of the knot
being drawn. This is the main point of departure for knotEd from graphic
editors like gremlin, xfig and others. If the software knows what knot the
user has drawn it can automatically generate the sentence describing the
knot (as discussed in section 1) which can then be taken into programs that
automatically calculate invariants. For a human to generate the sentence
from a diagram is both tedious and error prone and many of the algorithms
for calculating invariants require time exponential in the number of cross-
ings in a diagram. Programs to calculate invariants (and other things)
from a sentence have been developed by several graduate students and
professors of the University of California at Berkeley. knotEd has been
used in conjunction with several of them. It is the intent of the author that
if knotEd is released to the mathematics community that it should be bun-
dled and integrate with these programs (some of the algorithms are
extremely sophisticated). Another feature that could leverage off a pro-
gram that knew what knot a user’s diagram represented is an idea call an
isotopy lock. A user could activate the lock and from then on the program
would only allow alterations to the knot that were obviously reducible to a
sequence of Reidemeister moves. Thus the knot editor could be used as an
intelligent chalk board for educational purposes, or if the user saved all of
the intermediate diagrams the editor could automate some aspects of
demonstrating the equivalence of two knots. Thus an automated illustrator
would lead to a semi automated theorem prover (in the limited realm of
knot theory). Additional applications envisioned for the knot editor
include aiding in the preparation of papers (all diagrams in this paper were
produced by knotEd) and also as a teaching aid.

The biggest question was how the program should interact with
the user. Sev eral different operating metaphors were considered, the one
finally settled on we call "non-physical". This name is derived from the
fact that many of the models brought forth involved realistic 3 dimensional
perspective and physics. One of the most popular with the electrostatic
model where a knot would be thought of as being a collection of rigid

DRAFT

8

tubes sitting in 3-space with balls where they joined. The balls would
carry electrostatic charges and the tubes ends could move around on the
surface of the balls. The configuration would then move around or "relax"
until it had reached the lowest energy configuration and would thus (when
drawn in perspective) giv e a "pleasant" looking knot. The user could
change his view point and alter the knot by removing a sequence of tubes
and replacing them with another. The major drawbacks of this hypotheti-
cal model were the computation, the difficulty the user would encounter in
specifying a path in 3-space and the dependence on so much of knot the-
ory on actual diagrams. As discussed in section 1 a knot is reduced to a
sentence by examining the crossings on its diagram. But a knot sitting in
three space has no crossings, the lines appear to cross on our 2 dimen-
sional projections but never cross in 3-space. It was felt that with the
given resources it would be impossible to implement such a model and to
do so would be contrary to how knots are thought of in mathematics (thus
making the program a burden instead of a tool).

Another model considered was a two plan model. Again the knot
would be thought as ball and pipe affair but this time all of the pipes
would be trapped in two planes (one slightly above the other) with verti-
cal rods connecting the pipes in the two planes. The user would then spec-
ify which pipes were to be attached where. This combined a physical real-
ization of knot in 3-space with the diagrams because the program could
associate a unique diagram with the tubeworks by viewing the knot from
above. This model does not seem to have any major defects except that
specifying pipes could become quite tedious.

The model selected was derived by reading numerous books and
articles on knots and observing how diagrams were drawn freehand and
what properties of diagrams were actually used in theorems. As alluded to
before the 3-space realization of a knot is of little use when working on a
knot. The important relationship is not between a diagram and its 3-space
realization but between the diagram and its sentence. The diagram should
serve as an aid in altering the knot sentence. In keeping with this the knot
is realized in knotEd as a graph with vertices that all join either 2 or 4
edges. The 2 valent vertices are called control points (the user may add,
delete or move them around) and the 4 valent vertices are the crossings
(they can be thought of as vertices that have additional state information as
to which edge passes over and which edge passes under). The user can

DRAFT

9

remove, move, or replace any sequence of control points and the program
will then automatically place the crossings in the correct locations. Then
the program tries to associate these new crossings with the one in the pre-
vious knot so that they can inherit the state (which edge is up etc) from
them. The user can imaging that the edges are passing over and under
(like in the pipe model) but is not troubled about details in fitting them
together.

What the user actually sees while working is exactly like the dia-
grams in this paper (knotEd is a what you see is what you get program).
Though the user can turn on additional display features (such as marking
control points, etc). The next drawing shows a knot as the user of the pro-
gram might see it while working on it. The boxes represent the control
points and the dotted lines represent the actual lines of the diagram. The
knot is based off these lines and not the smooth curves because finding the
intersections of these curves would involve solving simultaneous 3rd
degree polynomials (possible but extremely messy). As you can see the
program often generates a handsome diagram from a small number of con-
trol points.

DRAFT

10

3. Implementation

The program was conceived by Professor David Goldschmidt of the
Berkeley mathematics department during a demonstration by the author of
a previous X application. The author then proceeded to design and imple-
ment the program under the direction of Professor Goldschmidt and with
the approval of Professor Richard Fateman who had referred the author to
Professor Goldschmidt. The bulk of the work was done during the Spring
1988 semester.

The tools originally available included Sun 3/50 workstations
with monochrome monitors and X version 10. The diagrammatic
approach taken fit very the mouse driven workstation very well. X was
chosen over SunTools (another window manager used on the math depart-
ment machines) because of the portability enjoyed by X applications. A
deep concern in the implementation was that while may of the mathemat-
ics graduate students and faculty regularly used the Sun 3/50 computers
they used them mostly for text processing and typesetting. With this in
mind much care was take to "bullet proof" the program. All signals are
trapped and any sort of catastrophic termination of the program results in
the users work be saved in a "panic file". The prototype would even log
the disaster and its circumstances in a record file in my account and mail
the user a letter describing where they could find their saved work. The
log file has since been removed since it was considered intrusive though it
did allow the author on several occasions to approach users with "the pro-
gram booted you out last night, what went wrong?"

The program has since been changed into an X11 application (the
X10 version will be allowed to die) and has been expanded to include
color support. This feature is especially useful when dealing with multiple
knots that are tangled together, though the program is fully functional on
monochrome workstations.

The original hardcopy was produced by emitting Tektronics
drawing commands and filtering these through a Postscript translator.
This cumbersome method was used instead of dumping a bitmap image of
the screen to make the image independent of the resolution of the screen
(since most monitors are nowhere near the 300 dots per inch pixel density
that is common in laser printers) and actually turned out to be a

DRAFT

11

tremendous performance improvement over dumping bitmaps. The draw-
ings in this paper were emitted directly from the program as PIC com-
mands which were then typeset (along with this text) by troff. Additional
back ends are planned. The hardcopy model was made purposefully
"stupid"; the program requires only operations to draw hardcopy: the abil-
ity to draw a line segment and the ability to draw text at a giv en location.
Erasure is not used to draw the undercrossings.

The isotopy lock is based on a natural generalization of the Rei-
demeister moves. The reader certainly noticed that the Reidemeister
moves took three steps to straighten the mangled trefoil, where simply
erasing the area in question and redrawing it would obviously have been
legal. In fact it is easy to see that all three Reidemeister moves can be per-
formed by erasing a segment of a knot that involves either crossings that
are entirely over or crossings that are entirely under and redrawing the seg-
ment anywhere constrained only that it must be entirely over or entirely
under the rest of the knot (depending on if it was originally over or under,
a segment that didn’t cross can be redrawn entirely over or entirely under)
or such that it does not cross the rest of the knot at all and that it does not
cross itself. Since this move is clearly legal and is able to generate the
Reidemeister moves we see that it is necessary and sufficient to generate
(by repeated application) all legal knot transformations. Every time the
user alters a knot the isotopy lock (if activated) checks that the replaced
segment meets the above criteria (actually it relaxes the criteria a little in
allowing the replaced segment to ignore trivial self crossings of the type
shown in the Reidemeister 1 move). This method was chosen above the
method of pointing at a crossing and specifying what Reidemeister move
to perform because the Reidemeister moves are in no way natural (they
were contrived to prove theorems) and this method of altering the knot
would require that the editor have extensive routing capabilities to draw
the new segment so that it did not introduce spurious crossings. Also for a
mathematician working on a chalk board the "always over or always
under" rule appears to be the one they actually use. Thus knotEd would
have allowed the user to fix the example trefoil in one step.

The smoothed curves are actually based on two different spline
models. The first model treats each line segment as a parameterized arc in
3-space and fits two 3rd degree polynomials to generate the curve. The
polynomials are determined such that they match value at the endpoints

DRAFT

12

and such that the derivative at each endpoint is a line parallel to the line
segment formed by drawing a line form the control point preceding the
endpoint to the control point succeeding the endpoint (this method of
determining the derivatives was inspired by memories of the mean value
theorem for derivatives from freshman calculus). The endpoints of the
smoothed curve are allowed to miss the control points (they can go to a
point determined by the weighted average of the control point and its two
immediate neighbors) but they must hit the crossings (since we don’t wish
to determine where the splines would cross we force it) though the bottom
string always stops drawing just before a crossing.

The second model is again a Hermetian spline and picks its
derivatives in the same way the first one does. The difference is that this
model insists on hitting all control points and that it fits only one polyno-
mial. This is done by rotating the line segment to be splined so that it is
horizontal. In this configuration it is not necessary to parameterize and y
can be a function of x. The spline is then rotated back into the proper ori-
entation. The second model has the advantage that it does not allow the
splines to cross their selves (they may still spuriously cross each other if
draw too close) or to form cusps. This model has the disadvantage that a
division is used to compute the derivative (deltaY/deltaX) so if deltaX (in
the rotated perspective) is small the derivative can become excessively
large (causing the curve to run away). The run away can be checked by
inserting an extra control point.

DRAFT

13

4. Future directions

Some plans for knotEd include:

1) Performance enhancement. The routine find_cross checks edges that
are already known not to cross every time it is called. It could keep track
of this and reduce the time complexity of the routine. Many other calcula-
tions could be improved.

2) Kirby Calculus and other difficult operations should be done by the
editor. This way the user benefits in (hopefully) three ways where he uses
knotEd: basic operations are easy, operations are all checked for legality
(isotopy lock) and complex operations are entirely automatic.

3) The ability to merge two stored knots into one. The data structures rely
heavily on the absolute location of records in an array (this made
find_cross INFINITELY easier) so a little code would be needed here.

4) Machine independent storage. Current method of storing knots uses
fwrite to write out records this is machine dependent and unreadable to
both humans and other programs. Some simple grammar would be suffi-
cient for this task.

5) More methods of getting hard copy. Currently hardcopy comes only
through Tektronics format or saving the screen to a file. The ability to
draw in PostScript, MetaFont, or some grammar would be nice.

6) Smarter redraw. Currently we update the whole screen. The ability to
redraw portions would improve performance and cut down on annoying
flicker.

7) More knot theory. Actually have the program try to reduce knots into a
simpler form.

8) More calculations available. Calculating software (ala Goldschmidt,
Walker, and Baxter) make knotEd more useful (and vise versa).

DRAFT

14

9) More knots. Somebody (I don’t hav e the time at the moment) should
sit down with Rolfsen’s knot theory and draw all the knots in the appendix
into the knot library.

10) knotEd ported to other machines. This should be easy as the program
I based knotEd on ported easily.

12) Some decent documents.

DRAFT

15

5. References

A good reference for some of the theory involved in the knot editor is
Kaufman’s article "New inv ariants in knot theory", The American Mathe-
matical Monthly, March 1988, p. 195. Rolfsen’s book. my X11 manuals.
Reidemeister’s book. The pic book. The reference from Boyle (if I ever
get it). Kaufman’s book (on Knots). Armstrong’s topology text. The
Springer-Verlag topo text. Dara’s article. Aaron’s article.

Conte- DeBoor numerical analysis text

CONTENTS

1. Elementary knot theory, a brief introduction .. 1

2. Design objectives .. 6

3. Implementation ... 9

4. Future directions ... 12

5. References ... 14

i

