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The use of combinatorial chemistry has become commonplace within the pharmaceutical industry. Less
widespread but gaining in popularity is the derivation of activity models from the high-throughput assays
of these libraries. Such models are then used as filters during the design of refined daughter libraries. The
design of these second generation libraries, which efficiently test and conform to the derived activity model
from the large space of virtual possibilities, remains an area of considerable research. We present here a
computationally efficient method for the design of optimally dense (in model matching compounds) synthetic
matrices fromin silico virtual libraries.

INTRODUCTION

Combinatorial chemistry1-3 is increasingly being used by
the pharmaceutical industry as a powerful tool to speed the
process of drug discovery and optimization.4-7 This technol-
ogy has also profoundly reshaped the opportunities for
computational input during drug discovery and lead optimi-
zation efforts. The application of computational methods has
quickly expanded from suggestions for tens of compounds,
as might come from structure based design, to thousands
and even tens of thousands of compounds, in the form of
combinatorial library designs. The need to propose thousands
of compounds for synthesis and screening has demanded the
development or extension of several computational design
techniques such as diversity,4,6 informative design,8 cluster-
ing,9 docking,10-12 and 3-D searching.4,6,13

The use of an activity model as a computational filter is
an example of a computational methodology which is still
evolving to meet the needs of combinatorial chemistry. This
technique was originally applied to small sets of compounds,
and it has been used successfully to identify a number of
novel inhibitor classes.14-18 Such models attempt to represent
what is known, suspected, or might be inferred about what
is necessary for activity against a specific target. An activity
model may be created in many different ways using
pharmacophores, excluded volumes, key features, or even
crystallographic data. Indeed, there are many commercial and
proprietary software packages devoted to just this task.19-21

However, two obstacles remain with the extension of this
technique to the design of synthetic combinatorial libraries.

The first obstacle comes from the application of these
filters to extremely large numbers of compounds. Activity
models, which were developed to operate on small numbers
of compounds, must now deal with the explosion in product
space that is inherent in any combinatorial chemistry
approach. For example, a combinatorial library created by
peptide bond formation has a potential size of more than 25
million products if only the>5000 acids and>5000 amines
from the Available Chemicals Directory (ACD) are consid-
ered. From this library of∼25 million only a relatively small

number of compounds can be synthesized, usually in the
range of∼1000 or less. It is this choice of which 1000
compounds to make (from the 25 million source pool) that
computational methods address. The development of less
complex computational filters has been necessary to address
this problem. A number of both academic and commercial
programs have been developed recently which attempt to
solve this problem using various approaches.22-24

The second obstacle comes from the experimental con-
straints of combinatorial synthesis. Instead of selecting one,
two, or a handful of compounds for synthesis, computational
methods now have to select a larger set of compounds for
matrix synthesis. Synthetic combinatorial libraries are gener-
ally designed with limits on both the total number of
compounds synthesized (usually a set of 96-well plates) and
on the number of monomers used. All products in a row or
column of the plate contain the same monomer; this is the
essence of the term “matrix constraint”. This constraint
typically operates downstream of an activity model (Figure
1). That is, even when an activity filter is applied to a virtual
combinatorial library, unless the filter is very stringent, one
is still left with many more compounds than can be
synthesized. It is a very challenging computational problem
to determine which subset of these compounds is both
optimally dense in “model-matching” compounds and ame-
nable to the experimental matrix constraints.

One note of caution is that the use of matrix synthesis
and activity models may greatly sacrifice the diversity of
the resultant synthetic library. If “one-off” compounds were
made instead of a matrix synthesis, the library could be

Figure 1. Schematic representation of the steps involved in creating
a synthetic matrix library from a virtual library.
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“cherry picked” from the identified compounds (model fitting
or otherwise). Additionally, a diversity metric could be used
to ensure selection of a maximally diverse set. The benefits
of such a library need to be weighed against the possible
difficulties of one-off synthesis and the greatly increased
number of reagents necessary. Computational schemes that
are not dependent upon explicitly testing each member of a
library, such as genetic algorithms25 or simulated annealing,7

have been developed and used with good results for synthesis
not held to matrix constraints.

Figure 1 depicts the two separate challenges outlined here.
The first is filtering/testing the virtual library against the
activity model. The second is the subject of this paper and
is the matrix design of a synthetic library which is maximally
dense in model-matching compounds. We present here results
from two solutions to the problem of designing a small
combinatorial matrix from a much larger source pool of
products of a combinatorial reaction. The first, a branch and
bound technique, is the more rigorous but becomes compu-
tationally intractable even with moderately sized libraries.
To overcome this problem, we also present a “cut-down”
approximation to the branch and bound solution and show
that the results, with respect to a real combinatorial library
and activity model, closely approximate that of the true
solution.

METHODOLOGY

Matrix Constraints. A synthetic combinatorial matrix is
composed of products (Pxy) which have been formed from
monomers (Rx andCy). An example of a generic combina-
torial matrix is shown in Figure 2. The products of such a
matrix can be tested against a derived activity model, giving
each individual compound a binary matching or not-matching
score. Looking at a combinatorial matrix such as that in
Figure 2 reveals the necessity of designing in monomer space
(R1 to Rx, andC1 to Cy) to obtain a product space (P11 to
Pxy) of interest. That is to say, only by careful selection of
monomers can the competing design criteria of library size
and percentage of model-matching products be balanced.

Designing small synthetic matrix libraries from the space
of all possible products for a combinatorial reaction, when
reduced to its simplest form, can be thought of as a problem
of clique detection.26 The combinatorial matrix, once tested
against the model of interest, becomes a sparse binary matrix
(i.e. composed of only 1’s and 0’s) with the 1’s correspond-
ing to the model-fitting compounds and the 0’s compounds
that do not fit the model. Finding a maximally dense (i.e.
containing the most 1’s) submatrix in such a system can be
done using a branch and bound algorithm.27 We have
implemented this relatively expensive solution and use it for
comparison to our more approximate but computationally
more expedient cut-down method, described later.

Branch and Bound. Given a sparse matrix as a starting
point, the branch and bound algorithm selects which rows
and columns to include in a final, maximally dense subma-
trix. The choice of including any particular row or column
can be thought of as a “branch”, and the exclusion as a
“bound”. In the limit of no bounds, all possible submatrices
are considered (guaranteeing both a good result and horrible
run time). During the selection process this algorithm often
reconsiders its decisions (branches) by considering a bound
heuristic. The bound heuristic is a routine that looks at a
current selection of rows and columns and returns an upper
bound on how dense a complete solution of which they can
possibly be a part. Thus, as is often the case, when the branch
and bound algorithm has found a good tentative solution and
a new partial solution being investigated turns out (by way
of the bound) to have no chance of being any better, the
search is curtailed. As long as the bound returned is correct,
the algorithm still finds an optimal solution. If the bound is
not always correct (and is merely heuristic in nature), then
the branch and bound algorithm may return a solution that
is not the best possible.

A trivially correct bound is to always assume that any
partial selection of rows and columns can be extended into
a matrix of density 1. An example of this would be to assume
that a given 3× 3 matrix which contained 2 desirable
products could be extended into a 5× 5 matrix which
contained 25 desirable products. This is patently false. This
bound, while possible, is not particularly useful as it never
allows the branch and bound algorithm to skip any of its
search. A slightly more realistic bound is given by assuming
we can add perfect rows and columns to any matrix. An
example would be to assume any 3× 3 matrix containing 2
desirable products can be extended into a 5× 5 matrix
containing 5× 5 - 3 × 3 + 2 ) 18 desired products. This
would also be correct, yet very inefficient. So, in addition
to being correct we wish for our bounds to be tight. That is,
we would like correct bounds that tend to be small. One
way to do this would be to use a search to find which
complete solutions a partial selection of rows and columns
can be expanded into. However, this involves just as much
work as the branch and bound algorithm itself. When
confronting such an intractable problem, the traditional
approach is, instead of solving the problem at hand, to solve
a different problem that has been chosen to be easier and
quicker to solve. This technique is called a relaxation. Below
we describe the relaxation we employed in our cut-down
method.

Relaxation of the Problem.Our original problem is to
select an actual small matrix (for synthesis) from a larger
matrix (of potential products). Any such matrix can be
described as the intersection of a set of rows and columns
from the original larger matrix. For each row we reserve a
variableR (i.e. R1, R2, ..., Rx). We restrict theRi to be zero
or one. When row I (which, remember, denotes a monomer
selection) has been selected for synthesis, we record this by
settingRi to 1; if row I has not been selected, we record this
by settingRi to 0. Similarly we reserve a set of variablesC1,
C2, ...,Cy to record our column selections. We further assume,
by simulating the possible reactions and scoring the product
molecules, that we have ready constantPi,j such thatPi,j has
been set to 1 if we (in silico) like the molecule found in the
ith row andjth column and 0 otherwise. It is important to

Figure 2. Products, Pxy, formed from monomersRx andCy, with
either model matching (1) or not (0). A successful detection
algorithm will find the maximally dense submatrix of 1’s.
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note the following: theR’s and C’s are variables and the
P’s are constant (determined by our software).

In this notation we see that a library usingm row
monomers andn column monomers (yieldingm × n
products) is exactly a setting of theR andC variables such
that

(RememberRi andCj are restricted to each be zero or one.)
The number of desired molecules picked up in a design given
by a particular setting of theR andC variables is then just

Only molecules that are in both a selected row and column
(Ri * 0 andCj * 0) and “desired” (Pij * 0) contribute to the
sum.

This leaves us with the abstract problem of, for a given
set of constantsP, finding settings for the variablesR andC
that maximize the sum (2). To “relax” the problem, we drop
one or more of the constraints. This produces a bound
because any solution of the original problem is also a solution
to the relaxed one; the optimal value can only go up. The
trick is to drop enough constraints so that the problem
becomes easy, but not so many that the bound becomes
meaninglessly large.

Our relaxed problem was to simply replace the condition
that all Ri and Cj be each 0 or 1 with that they be real
numbers in the range 0-1 (i.e. we now allow fractional
values such as 0.5). While solutions to this mathematical
problem can no longer be interpreted as selections of rows
and columns, we can use them as bounds in our branch and
bound search. This type of problem is called a quadratic
program and in this case (positive definite) is easy to solve.27

Graph Theory. An alternative in attempting to find a
computationally less intensive solution to the synthetic
combinatorial library design is to approach it in terms of
graph theory. By graph we mean a collection of items (nodes)
that are joined in pairs (edges). For a matrix, we can consider
each row and each column of our possible synthesis matrix
as a node. If the compound given by the pairing of a row
and column is considered good, we include an edge in the
graph; otherwise we do not (Figure 3). In graph terms we
wish to find a small set of nodes that has a larger number of
edges within it. A graph with the largest possible number of
edges (one for each pair of nodes) is called a “clique”. The
problem of finding a clique in a larger graph is called “clique
detection” and is a well-known but difficult problem.28 While

our current problem is not to find a clique, it can be shown
that it differs only in unimportant details. That is, if one had
an efficient method for finding dense submatrices, we could
use this method to find cliques in graphs. Because of this
bidirectional relationship, and some significant notational
similarities, we consider our problem very closely related
to clique detection, which is the literature we looked to in
search of solutions.26,27

Cut-Down Algorithm. Using the graph theory approach
as inspiration, we approximate the exact solution by using a
“cut-down” procedure instead of the selection, or “build-
up”, approach employed in the branch and bound technique.
The cut-down method is what is called a greedy method27

in that it eliminates the row or column that seems most
advantageous to remove and never revisits its decision.
Unfortunately, as both clique detection and near-dense matrix
detection are both NP-hard, there is no guarantee that such
a simple method will find the optimal solution. However, it
is guaranteed that the matrix returned by this method will
be amenable to synthesis (having the specified number of
rows and columns) and will be at least as dense as the input
data. In fact, the output matrix will always be among the
most dense of all the matrices it considers on the way to a
solution.

For simplicity, the cut-down method will be described here
as a two-dimensional problem. The algorithm can be outlined
as follows:

(1) Define the desired synthetic matrix dimensions.
(2) Examine the matrix and determine a score for each

row and column (i.e. monomer) in the matrix. The score in
its simplest form can be defined as the number of model
fitting compounds present in the row or column.

(3) Beginning with the list of monomers (i.e. rows or
columns) furthest from the desired length, remove the row
(or column) which has the lowest score.

(4) Recalculate the score.
(5) Go back to step 2 until the matrix is of the desired

size.
This method is intuitively attractive since it corresponds

most closely to what would be done if the problem were
presented manually. Benefits of this algorithm include that
the resultant matrix will necessarily have an overall density
of model-matching compounds greater than or equal to that
of the initial matrix. Additionally, the method can accom-
modate rectangular designs and is easily extensible to higher
order matrices and more complex scoring functions. Finally,
this approach is intuitive and scales with the number of
monomers. It is important to note that the recently developed
PLUMS algorithm29 described at the Fifth International
Conference on Chemical Structures has several interesting
similarities to the methodology described here, but remains
distinct. PLUMS is an interesting example of “convergent
evolution”, as methodological problems are identified through-
out the industry similar solutions are developed.31

A simple example of the cut-down approach is shown in
Figure 4. The initial matrixA is shown with the scores for
the individual rows and columns listed. If the desired matrix
size is 3× 3 and the initial matrix is 10× 10, either axis
may be examined first as neither is further from the final
size than the other. After two rounds, one of row elimination
and one of column elimination, matrixB is obtained. This
process is continued, resulting in matricesC, D, E, etc., until

Figure 3. Binary matrix and its graph theory representation. Each
node represents a model matching compound (colored black) and
each edge the monomer relationship between that product and other
model-matching products.

∑
i)1

X

Ri ) m and ∑
i)1

Y

Ci ) n (1)

∑
i)1

X

∑
j)1

Y

PijRiCj (2)

COMBINATORIAL LIBRARY DESIGN J. Chem. Inf. Comput. Sci., Vol. 40, No. 3, 2000703



the final matrixJ is determined. The density of model-fitting
compounds in the original combinatorial matrix was 5%,
while the final matrix contains a density of 90%. Attempting
to optimize by hand the density of model-fitting compounds
from even an extremely small 10× 10 matrix is an
interesting academic exercise (left to the reader) which
quickly shows the difficulty to be expected as the size and
dimensionality of the problem increase.

RESULTS/DISCUSSION

The results of applying the cut-down algorithm to both
random matrices and real combinatorial libraries are sum-
marized in Table 1. The first 12 examples are for a randomly
generated binary matrix. This presents a pessimal case for
clique detection; the random matrix assumes no relationship
between row and column components and the product result.
This is not the case in a combinatorial matrix containing
model-matching compounds, as particular monomers (rows
or columns) tend to be very correlated with “value” (model-
matching). That is to say, ifP11 matches an activity model,
then it is likely (through the similarity hypothesis25) that other
compounds formed withR1 will also be model-matching.
The next 3 examples in Table 1 (13-15) are for a generic
combinatorial library (such as amines and acids in an amide
bond formation) screened against activity models on an active
project. The last 3 combinatorial examples (16-18) are from
a three component dihydroisoquinilinone library.30

In example 1, given the random matrix of initial size 10
× 10 and initial density of 29%, a final “synthetic” matrix
size of 4× 4 was sought. The cut-down algorithm was able
to find a matrix which was 50% dense in model fitting

compounds (8 out of 16). The branch and bound algorithm
with polynomial refinement was able to do slightly better,
finding a 62% dense matrix (10 out of 16). For this small
test, both methods performed nearly equivalently and neither
was computationally prohibitive. The cut-down method took
∼0.5 s on a large memory Pentium 400 MHz machine, while
the branch and bound algorithm took∼1 s on the same
machine.

The remaining examples (2-12) on random matrices
compare the behavior of the branch and bound algorithm
with that of the cut-down algorithm in cases where the
computational expense of the branch and bound algorithm
becomes more significant. We present these results by
employing matrices of different initial sizes, densities, and
desired final sizes. It is apparent from examples 1-12 that
for a random matrix the cut-down method is able to find a
dense submatrix within 5-10% of the density found by the
more computationally expensive branch and bound technique.
The differences in computational speed between the algo-
rithms become more significant with either increased initial
library size or dimensionality of the problem. In example 3,
the branch and bound algorithm took∼7 min, 3 s tocalculate
the result, in contrast to the cut-down method which needed
only ∼0.5 s for the same system on an identical 400 MHz
Pentium. A more stark example is the 500× 500 matrix
(example 10) in which the branch and bound algorithm took
several hours to determine its result, while the cut-down
algorithm only required∼1.4 s. Examples 11 and 12 contrast
the methodologies performance for larger systems. In the
case of the 5000× 5000 array we were unable to calculate
the branch and bound result within a reasonable time (<1
week). The 1000× 1000 array took several days of CPU
time (Pentium 400 MHz) for the branch and bound algorithm
as compared to the∼2.1 s for the cut-down technique.

Most combinatorial libraries are (fortunately!) not random
in their distribution of model fitting compounds. This creates
product matrices which are much more amenable to the cut-
down algorithm than random matrices. In the first “real-life”
example (13), a library of 50 amines and 50 acids was fully
enumerated and compared to a model derived for activity

Figure 4. Example of the cut-down algorithm.

Table 1. Data Comparing the Branch and Bound and Cut-Down Algorithms

example no. matrix type init sizea init densb final sizea cut-down final densc branch and bound final densc

1 random 10× 10 0.29 4× 4 0.56 0.62
2 random 100× 100 0.40 10× 10 0.73 0.86
3 random 100× 100 0.20 20× 20 0.32 0.40
4 random 100× 100 0.40 20× 20 0.59 0.65
5 random 100× 100 0.20 10× 10 0.40 0.58
6 random 200× 200 0.10 20× 20 0.32 0.32
7 random 200× 200 0.20 10× 10 0.46 0.64
8 random 200× 200 0.40 10× 10 0.75 0.90
9 random 200× 200 0.20 20× 20 0.37 0.46

10 random 500× 500 0.20 20× 20 0.47 0.54
11 random 1000× 1000 0.20 20× 20 0.48 0.55
12 random 5000× 5000 0.20 20× 20 0.64 -
13 combinatorial 50× 50 0.42 14× 14 1.0 1.0
14 combinatorial 100× 100 0.18 14× 14 1.0 1.0
15 combinatorial 150× 150 0.11 14× 14 1.0 1.0
16 combinatorial 48× 104 0.020 10× 10 1.0 1.0
17 combinatorial 104× 104 0.020 10× 10 0.98 1.0
18 combinatorial 104× 48 0.020 10× 10 0.88 0.88

a The initial and final sizes of the matrices given in dimensions of thex andy monomer axis.b Initial density as defined by the number of model
matching compounds divided by the total number of compounds in the library.c Final density found by the algorithm defined as the number of
model matching compounds in the matrix defined by the final size.
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(Table 1). One plate was proposed for the synthetic library
(96-well format), and a 14× 14 library was designed (the
design was created slightly larger than the desired final
library size anticipating the unavailability of some mono-
mers). Our results show that both the cut-down and branch
and bound methods were able to find complete submatrices
(i.e. of 100% density). Examples 14 and 15 are for slightly
larger initial library sizes using the same combinatorial
library. The final synthetic matrix size calculated was the
same as that in example 13, and the results again show nearly
equivalent behavior. The final three examples (16-18) are
taken from a three component library in which one element
is held fixed in succession. The densities obtained from both
algorithms are nearly identical for this system as well.

In conclusion, we have presented a method for the
calculation of a highly dense synthetic submatrix of model
matching compounds, given a sparse matrix of model-fitting
compounds. While the cut-down method is shown to function
adequately on random matrices as compared to a more
precise branch and bound methodology, its strength is that
it takes advantage of the correlation between similarity and
activity found in real-life combinatorial library design efforts.
In such cases, the cut-down method performs almost identi-
cally to the more computationally expensive branch and
bound algorithm. The area in which the cut-down method is
potentially most successful is its extension to large and higher
order matrices, at which point the computational cost of other
methods of clique detection become overwhelming. Ad-
ditional benefits of the algorithm include that it is fairly
intuitive and that additional factors such as price or similarity
might be easily incorporated into the score used for each
row and column.
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