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1 Introduction

We use the United States’ Major League Baseball World Series to demonstrate some
of the “arbitrage arguments”! used in mathematical finance. This problem is a classic
finance puzzle question and is an interesting introduction to some exciting techniques.

“Arbitrage” is the simultaneous buying and selling of a commodity, usually in
multiple markets, that returns a risk-free profit. An example would be finding a
market where apples are selling for $1 and another where they are selling for $2, and
then simultaneously executing a purchase order in the cheap market and a sales order
in the expensive market (assuming no significant shipping risks or costs). Typically
“arbitrage opportunities” are too much to hope for and to make a profit you must
add value, loan money, hold inventory or take on risk. This is just the mathematical
finance way of saying “there is no free lunch,” but a number of surprising facts about
markets can be proven using this principle.

2 The Problem

Consider a “first to win k” contest like the United States’ Major League Baseball
World Series. The World Series is a “first to win four” contest (sometimes called
“best of seven”) where a number of games are played between two teams and the first
team to win four games is declared the series winner. Ignoring the possibility of ties
this process can take from four to seven games. We can (as in Figure 1) lay out all
of the possibilities in to a picture that moves from left to right and then moves up
when the first team wins and down when the second team wins.

Any sequence of games is represented by a path through this diagram (starting at
the left) that reaches a node with no exit. At each node we have marked in the wins
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'More pedantically we are using the principle of “no arbitrage” or “arbitrage free” argument, but
the name is traditional.
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Figure 1: World Series Tree (Win over Loss)

for each team (Team One on top, Team Two on the bottom). The nodes where one
team has won four games are where the series ends.
The “arbitrage question” is:

If you had access to a bookie who was willing to take an even-payoff
bet (on either side) in each game of the World Series, can you design a
schedule of bets on games that simulates an even-payoff one dollar bet on
the outcome of the entire World Series?

That is: you wish to make a bet that pays you $1 if your team wins the World
Series and costs you $1 if your team is defeated. You can not find anybody to take
such a bet- but you have found a bookie who makes the incredibly generous offer of
taking bets (at even pay-off) on each and every game in the series. Can you, without
any additional risk, simulate a World Series bet by making a series of per-game bets
with this bookie?



3 The Answer

The answer turns out to be that you can simulate a world-series bet. The reason
for hope is that both types of bets (the even-payoff bets on games and an even-
payoff bet on the whole series) are expressing the same underlying belief: that both
teams have an exactly equal chance of winning. The teams may or may not have the
equal chances of winning- but offering to take bets on both sides at equal pay-off is
equivalent expressing just such a belief.

The principle that the probability you are willing to take bets at expresses your
subjective probabilities is a principle goes back to Bruno de Finetti and is the most
basic “arbitrage style” argument. The principle is simple but it is useful warm-up to
think about. Under the assumption that you are “rational” (in the economic sense,
which just means you are not giving money away without a reason) and if pg denotes
your personal estimate of the probability of your team winning then if you are willing
to bet $1 that your team wins at even payoff (meaning you collect $1 if your team
wins pay $1 if your team loses) then for this bet to make economic sense you must
have:

ps(+81) + (1 = pg)(—$1) = 0

which means pg > %

Similarly if you are willing (for purely economic reasons) to take the other side of
the bet at the same even-payoff bet on the other side (reversing the rolls of winning
and losing) then it must be true that pg < % We then have our conclusion: from an
economic point of view you should be willing to take either side of a fair-payoff bet
only if your estimate of the probability of winning is 1/2.

We now return to the World Series diagram. If we bet on individual games (instead
of making one bet on the whole series) then at each node in the diagram we expect
to have some sort of net winnings or net losses. For example at each node where our
team has won four games we should be holding $1, so we will label these nodes with
+1. Similarly at each node where the opposing team has won for games we expect
to have lost exactly $1 so we label those nodes with —1. Our task is to figure out the
amount bet at each node and our net holdings at each node. If we can find a schedule
of bet amounts that leads to the correct outcomes at the end of the world series and
starts with an initial net holdings of $0 then we have solved the problem.

If we look at Figure 2 we see there the node corresponding to each team having
won 3 games points to two nodes we know the values of (the World Series ending with
either team the winner). We can use the fact that this node points only to nodes
with known net holdings to figure out both the bet that must be made at this node
and the net holdings this node should have at this point in World Series.

Let x be the (unknown) net holdings we have at this node and y be the (unknown)
amount we bet then to complete the World Series bet we must have the following:

r+y = 1
r—y = —1
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Figure 2: World Series With Some Values Filled In

This is enough to notice that  (your holdings) must be the average of the two
outcomes pointed to and y (your bet) must be one half of the difference of the two
outcomes. So the “each team has won three games” node (near the very right end of
the diagram) should have a net holding of = $0 and we should bet y = $1. Filling
in this node with the net holdings ($0) now means that there are other nodes that
point only to nodes with filled-in net holdings. We can, in fact, repeat this process
of filling in each node with unknown net holdings with the average of the two known
nodes it points to until we complete the diagram as in Figure 3.

In the completed figure each node is filled in with the net holdings required to
implement our betting schedule. We can see that a diagram like this can always be
filled out to completion by looking at the diagram as having layers like an onion and
noticing that we start with the right most nodes filled in (they are the nodes where
the world series ends). It is obvious that we can fill out every node in the layer of
nodes just inside the outer layer if we start at the right most such node and work back.
Every layer can be completed one after another until we get to the inner most layer
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Figure 3: World Series All Values Filled In

which is just the starting node. To implement the betting strategy, we keep track of
where we are in the diagram and always bet one half of the difference between the
net holdings of the two nodes pointed to by the node we are at.

If the first node of the diagram was marked with a value other than zero it would
mean that the world-series has a net bias for the first team or the second. Since the
rules are symmetric this would be a nonsense conclusion, so we can be sure that all
of the even-score nodes must be valued at zero.

The filling in of blanks using values ahead of them (from the future) is the heart of
the Binomial Pricing Theory for options is based on a very deep idea called Dynamic
Programming. The idea is that you may not know which future you will experience-
but you may know the valuation of every possible future. It is an amazing fact that
even without introducing probabilities or probability estimates of which future you
will experience just knowing the value of every possible future is enough to compute
the value of a bet in the present time. In our example: you may not know ahead of
time the final scores of the world series, but you do know value of a world series bet



for each possible ending score.

4 What is the analogy?

From a finance or betting point of view the problem is solved- we have procedures for
building the betting schedule and we have the schedule itself. From a mathematician’s
point of view we have only just started- we have some procedures and relations but
what are they an analogy of?

Naively one might think that they should bet around one fourth of their desired
outcome in each game to simulate a best of four series. However to simulate a total
World Series bet of $1 we use an initial bet of $5/16 = $0.3125 in our schedule. This
is almost a third of our desired total bet. This gets us wondering: what is the general
form of this first bet?

Let bet(k) denote the amount of the first bet in the simulation of a “best of k"
bet. If we compute bet(k) (by constructing betting schedules as above) for many
values of k& we see that bet(k) seems to shrink slower than 1/k. In fact it seems to
shrink at a rate of around 1/v/k. Even more intriguing if you plot k/(bet (k) * bet(k))
it converges (very slowly) to 3.14---. We can conjecture that for very large k the
initial bet is: 1/v/mk where 7 is the famous ratio of the ratio of the length of the
circumference of a circle to the the length of the diameter of the same circle.

Now 1/+v/7k is much larger that 1/k (as k gets large). So the scheme says to bet
a fairly large amount of your budget on the first game, and that winning the first bet
is worth a bit more than you would expect (it takes you more than one kth of the
way to victory).

What is going on? We can again apply an arbitrage or de Finetti style argument
and say since the whole game was “fair” with expected pay-off zero then we can
relate probabilities and payoffs. The net holdings at each node encode how much of
an advantage you have at the node (or how much you should pay to take over from
another gambler at this point). If we let p; denote the probability of going on to win
the World Series bet after winning the first bet then we must have:

p1($1) + (1 — p1)(—$1) = bet(k).

Or p; = (bet(k)+1)/2. For the real World Series we had bet(4) = 5/16 so p; = 21/32.
This means we can read-off from the valuation tree that the probability of winning
the World Series (for perfectly equally matched teams) rise from 1/2 to 21/32 after
you win the first game.? This can be confirmed from Figure 3. It is easy to confirm
that a 21/32 portion of all paths the node where Team One has one the first game
end with Team One winning the whole World Series (each path must be weighted by
its probability which are 27Pathlength) - Instead of computing the bets we could have

2Again, this if for the unrealistic situation of perfectly matched teams. For teams that have
uneven probability the series strongly amplifies the better team’s chance of winning (which is one of
the series intents). Also a better could update his subjective probability based on the first outcome
which also changes things.



Figure 4: Weighted Paths

computed the probability of going on to win the World Series at each node® (and
then used the above equivalence principle to read off the required bets).

We can create a new diagram where we start at the node where our team has won
the first game and we label all the non-ending nodes with the number of paths that
reach the node. For example the two nodes immediately after start can be reach one
way each and the next three nodes (“3 games to 07, “2 games to 1”7 and “1 games
to 27) can be reached 1,2 and 1 ways respectively. It is a clever trick to notice that
the easiest way to count the number of paths to a node is to just add the number
of ways found on the previous nodes that point to the our target node. This clever
way of counting paths is to use weighted paths (inspired by something called Pascal’s
Triangle). Figure 4 shows a few columns of a weighted path diagram (thought he
ending nodes are re-written as the sum of the paths reaching them where every path

3This calculation is in essence summing end outcomes across all possible paths weighted by how
likely each path is. There are many possible paths, but the calculation can be performed quite
efficiently.



is divided by 27Path leneth which is the probability of following such a path).

The entries of weighted path diagram are identified by how many columns out
from the start node they are and how many steps from one side of the row they are.
Both identifiers start at zero so the starting node is denoted as (8) the two nodes just
after them are denoted ((1)) and (}) The three nodes just after these are denoted (g),
(f), (3) and are (as we said before) equal to 1,2 and 1 respectively. These entries are
called “binomial coefficients” and the rules for computing them (for integers a,b) are

as follows:

<Z> = Oifa<Oorb<Oorb>a

<g) — lifa>=0
() = 1lifa>=0

B a—1 n a—1 th .
. = — b otherwise.

From our diagram we see that the probability of winning the World Series bet is a
diagonal sum across Pascal’s Triangle (weighted by powers of 2). To somebody trained
in combinatorics it is obvious* that a sum like this must itself be a single binomial
coefficient. A quick trip to “The On-Line Encyclopedia of Integer Sequences” is
enough to identify the solution (Encyclopedia sequence “A001700”) and we can get
an exact form for initial bet:

bet(k) = (2: _13> 9~ (2n=3)

Q2

A lot is known about Binomial coefficients. In fact by a formal called “Stirling’s

approximation” we know
(Zk - 3) g-(2n-3) o, L
k—1 vk

as observed.

5 Relations

de Finetti used this style of reasoning to provide a foundation for the basic theory
of probability. Probability theory has always been somewhat problematic for

44Obvious” is actually a special term in mathematics. To illustrate what it means we repeat a
story. A mathematician was giving a lecture and stated that the point just shown was obvious. A
student asked if it was really obvious. The mathematician stopped the lecture and paused to think.
The mathematician thought some more, and eventually walked out of the room. Forty minutes later
the mathematician returned to the lecture hall and informed the student that the last point was
indeed obvious.



mathematicians in that it has “content” or “an interpretation” whereas the power of

modern mathematics comes from a more axiomatic or content-free way of thinking.
The issue is if you are defining the meaning or interpretation of something like
probability how do you check or demonstrate that you have the correct meaning
without referring to some other pre-existing interpretation? A foundational or first
interpretation has trouble looking for prior definitions to show equivalence to.[6]

The arbitrage-free arguments and the binomial arguments in particular are the
basis of much of mathematical finance and are the basis for a number of Nobel Prizes
in Economics including the Black-Scholes-Merton Option Pricing Model[2] and the
Binomial Option Pricing Model.[5]

7 (the ratio of the circumference of a circle to its diameter) is one of
the most famous constants in mathematics. Pascal’s Triangle is one of the
oldest and most studied diagrams in mathematics with roots all the way back
into ancient China.[4] It is actually remarkable how much Zhu Shijie 1303
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diagram: looks like our modern version of Pascal’s

Triangle (though they are separated by about 350 years, source Wikipedia):
1

1 4 6 4 1. The two diagram differ only in the notation used to
write numbers and both start by filling in two diagonals of ones and all other numbers
are the sums of the two numbers nearest and above them.

The arguments that replace paths with counts are a particular example of
a technique called “Dynamic Programming” invented by Richard Bellman for
mathematical optimization and now one of the core concepts of algorithm design.[1]

The idea of using a set of unknown futures that each have a known value is the key
idea in solving a number of hard problems in probability and in optimization in the
face of uncertainty. One of the the most famous of these problems is the “two armed



bandit” where one must decide how to split ones bets between two slot machines that
are thought to pay-off at different rates. 3|

For the two armed bandit problem the concern is how long to experiment with
both machines when one machine seems to be paying more. The correct solution
depends on seeing that how certain you need to be on the difference in machine vales
(which in turn drives how long you experiment on both machines). This is a function
of how long you intend to use the information. If you intend to play for a long time
you want a long initial research phase to produce a very high confidence ranking
of the machines; if you do not intend to play for long you want to switch to the
machine you suspect is better sooner and on less evidence. Of course “slot machines”
is just a toy-problem standing in for uncertain investments, research spending or even
spending on different only advertising phrases.

6 Conclusions

The finance “no arbitrage” principle is actually a very powerful mathematical tool.
It is equivalent to but somewhat more graceful than introducing probabilities when
solving some combinatorial problems. In this setting it is equivalent to de Finetti’s
principle and converting between probabilities and net holdings is very easy.
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