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“Essentially, all models are wrong, but some are useful.”

– George Box
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Goal
• Learn about tools that allow you to produce, 
evaluate, and deploy powerful state of the art 
predictive models.


• Data scientists become expert in all these steps.


• Managers need to be expert in at least model 
evaluation.
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What is a Good Model?

Performance metrics for 

classifiers / decision procedures.
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How do you measure model 
performance?

• Accuracy is not the only way

Data

Model 2

Model 1 80% accurate
0% recall
70% accurate
100% recall

20% target class 
prevalence
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Which Metrics Are Appropriate?
Question Metric Example

Is it important that a positive 
classification is correct? Precision

If the test comes back 
positive, is the patient really 

diabetic?

Is it important we find all 
positive cases?

Recall
Sensitivity

Do we miss any diabetics 
through this test?

Are false positives expensive? Precision
Specificity

Diagnoses that lead to costly 
treatment

Are false negatives 
expensive?

Recall
Sensitivity

Diagnosing conditions that 
are costly if untreated

Is it important to get 
everything right?

Accuracy
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Technical Metrics
• AUC (ROC), deviance, and others.


• Good metrics for data scientists and between data 
scientists


• Useful proxy measures for comparing candidate 
models


• Not always easily translatable to business goals
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ROC/AUC
• Graph of trade-off between true positive and false positive rates as 
labeling threshold T is varied.


• AUC: area under the curve

• Probability that a randomly chosen positive example will score higher 
than a randomly chosen negative example (with appropriate tie-
breaking).


• Invariant to monotonic transformations of scoring function


• Independent of target class prevalence
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Predictive modeling schematic
• Define a useful business goal.


• Choose a convincing performance measure.


• Collect input (“independent”) variables.


• Build a model.


• Confirm you have a decisive model.


• Refine/repeat.
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Big risks

• Not being able to produce a good model (“under fit”).


• Not being able to falsify a bad model (“over fit”).


• Model depending on variables that are really only 
available after the outcome is known (“data leakage”).
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Example: KDD2009
• KDD conference 2009 contest data.


• Predict from a few hundred features which credit 
accounts will “churn” or cancel.


• Training data: measurements from past accounts 
known to have cancelled or not cancelled in a fixed 
time interval.
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Assume we have our data 
ready to go

• Data acquisition, documentation, cleaning, and 
preparation is by far the largest most critical part of 
real world data science.


• For this demo we are going to assume this is done 
and move on to the part people always want to hear 
about: model construction.
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Pre-packaged software
• You don’t need a Ph.D. to perform machine learning, because 
people with Ph.D.s have already implemented and shared very 
powerful methods:


• Gradient boosted trees.


• Random forests.


• Deep learning.


• For this demonstration we will exhibit R, decision trees, gradient 
boosting, and h2o deep learning.
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First try

• Party like it is 1984.


• Classification and Regression Trees
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Decision tree model with 
default settings

• Performance seems 
so-so.


• Winners of KDD 
contest reported AUC 
of 0.76.
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Try more powerful modeling 
techniques

• gradient boosted trees


• Based on Jerome H. Friedman’s 
“gradient boosting 
machine” (1999).


• All code: 


• https://github.com/WinVector/
PreparingDataWorkshop/tree/
master/KDD2009
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Or even more powerful 
methods

• Neural Net / Connectionist / 
Deep Learning


• In continuous 
development from the 
1960s through now.


• Shown here: h2O.ai 
“deeplearning” 
implementation.
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Step back
• We have shown the typical “left to their own devices” data scientist 
workflow concentrating on improving models “in the lab” only on our 
training data.


• In a real application


• The biggest modeling improvements come from commissioning new 
measurements and features.


• High performance on training is not the true end goal, and must be 
viewed with suspicion (issues like over-fit, and data-leaks are important).


• What evidence do we have we actually solved the problem?
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(switch)

Please stand by….
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Is it really a Good Model?

Estimating out of sample 

performance
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Question #1: Which model is 
the best?

Performance on 

Training Data

Decision Tree 0.71

Gradient Boosting 0.73

Neural Net 0.76
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Now give the models 

new data:
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Decision tree results
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Gradient Boosting results
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Neural Net / Deep Learning 
results
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Best on train ≠ Best in future
Performance on 

Training Data
Performance on 


Test Data

Decision Tree 0.71 0.70

Gradient Boosting 0.73 0.73

Neural Net 0.76 0.69
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The problem

• Performance measures on training data tend to be 
upwardly biased or optimistic.


• We want a model that works well on future or new 
application data.
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True estimate of out-of-sample 
performance: holdout data

 Test-train split 

• Subset of data only used 
for model evaluation


•  Simulates future 
application


• Can help find some 
issues such as over-fit.


• Blind to other issues 
such as concept drift and 
data leakage.
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Question #2: How do you tune 
the modeling algorithm?

• How many trees for gradient boosting? How deep? 


• What's the best learning rate for NN?


• How many iterations before you stop updating the 
NN?
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Naive approach
 Use Training Data 
to Pick Parameter  

• Train one model 
for each candidate 
parameter P


• Pick the P the 
performs the best
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Which gradient boosting model 
(xgboost) is the best?

Number of trees Performance on 

Training Data

50 0.93

100 0.98

200 1.0
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Again:

Best on train ≠ Best in future
Number of Trees Performance on 

Training Data
Performance on 


Test Data

50 0.93 0.73

100 0.98 0.72

200 1.0 0.70

Overfit!
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Tune model with 

validation data

 Train-Val-Test Split


• Fit candidate 
model(P) on Train


• Evaluate candidate 
model(P) on Val


• Re-evaluate final 
model on Test (not 
shown)
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This is better, but….
• Validation performance estimates only unbiased the first time 
("peeking problem")


• You need a LOT of data to split three ways

• Bigger training set = better model

• Smaller validation set = more peeking problems

• "Statistically inefficient"


• Computationally efficient

• One model per parameter setting
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Estimating Out-of-sample 
performance with training data
 Cross-validation


• No point is evaluated 
on a model it helped 
to train


• Use cross-val 
estimates to pick P


• Train final model with 
best P and ALL the 
training data
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Cross-validation
• Less biased estimate of out-of-sample performance


• "Peeking" issue slowed down


• Statistically efficient

• Largest possible validation set for a given training set size

• Final model is trained on ALL the training data


• Computationally inefficient

• Fit N models for every possible parameter


• Evaluates modeling procedure — NOT the performance of the final 
model.
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Cross-val vs. Holdout

Statistically 
Efficient

Computationally 

Efficient

Evaluates 
Model

Evaluates 
Procedure

Cross-val

Holdout
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Data Science : Data-rich
• Generally, we will prefer train-validation-test split


• Lots of data to spare for holdout


• Large data sets make computational efficiency 
attractive


• Possible exception: very rare target class
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When to Consider Cross-val

• Data sets too small for train-validation-test split


• Lots of modeling parameters


• Rare target or rare features of interest
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Cross validation and existing 
packages

• Many modeling procedures have cross-validation or 
validation set use baked in

• Picking parameters, stopping criteria, etc.

• gradient boosting with gbm, h2o neural nets….


• Reduces upward bias, but doesn't eliminate it

• Still need a holdout set 
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Holdout: No peeking! 

(Or not too much)

• In practice: fit model->evaluate->tweak model …

• Too many iterations and performance estimates are 
upwardly biased again

• Especially if the holdout (or validation) set is small


• Recent differential-privacy related results to alleviate this

• http://www.win-vector.com/blog/2015/10/a-simpler-
explanation-of-differential-privacy/
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Takeaways
• Knowing how a model will perform in the field is 
critical


• Data used in model construction may not be 
suitable for estimating this


• Train-Val-Test split and Cross-validation techniques 
can be used to fix some of the issues.
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Thank you

All examples: http://winvector.github.io/ModelTesting/ 


